
Automatically Checking Semantic Equivalence
between Versions of Large-Scale C Projects

Viktor Malı́k
Red Hat and Brno University of Technology,

Faculty of Information Technology

Tomáš Vojnar
Brno University of Technology,

Faculty of Information Technology

Abstract—Motivated by a need of some software projects to en-
sure semantic stability of some of their core parts, the paper pro-
poses a highly-scalable approach for automatically checking se-
mantic equivalence of different versions of large C projects, with
a particular focus on the Linux kernel. The proposed method uses
a novel combination of pattern matching with light-weight static
analysis and control-flow transformations. Although the method
cannot prove equivalence on heavily refactored code, it can
compare thousands of functions in minutes while producing a low
number of false non-equality verdicts as our experiments show.
We implemented our approach in a tool called DIFFKEMP and we
show that DIFFKEMP, unlike other existing tools, gives practically
useful results even on projects of the size of the Linux kernel.

I. INTRODUCTION

The problem of automatically checking semantic equiv-
alence of programs is nowadays a widely studied field of
program analysis. Unfortunately, despite a lot of progress, ex-
isting approaches for sound equivalence checking often rely on
heavy-weight formal methods and consequently have problems
with scalability. This limits their usage in the industry despite
the fact that there exist a lot of their potential applications.

One of such applications is for systems that require some
sort of stability and backwards compatibility. These can be,
e.g., various standard libraries or kernels of operating systems.
One of the best known commercial operating systems is Red
Hat Enterprise Linux (RHEL), whose kernel includes a list
of functions, a so-called Kernel Application Binary Interface
(KABI), whose semantics should be stable across the lifetime
of a single major release (unless changes are dictated, e.g., by
security issues). Ensuring this stability at presence of constant
refactoring changes is rather difficult, and any (even partial)
automation of the backwards compatibility checking has huge
potential to save a lot of human effort and costs.

In this paper, we propose a novel automated method for ver-
ifying whether two versions of a program that should have the
same semantics—as one of them is expected to be a refactoring
of the other—do indeed have the same semantics (and hence
that no error has been done during the refactoring). We aim
at applicability to large-scale industrial code. Applicability of
our approach to the Linux kernel is particularly important to
us, which is motivated by a concrete interest of Red Hat. Our
approach is, however, more general and applicable on other C
projects too, which we demonstrate by experiments with one
of the existing implementations of the C standard library.

To achieve the needed scalability to hundreds of thousands
of lines of code, which—to the best of our knowledge—is be-

yond capabilities of current tools and approaches, we propose
to compare the different versions primarily per-instruction on
the level of their LLVM intermediate code representation.
Of course, checking semantic equivalence on the level of
single instructions would normally lead to many false non-
equivalence results. In order to resolve this problem while
retaining scalability, we pre-process the code to be compared
using various static analyses and code transformations to bring
the code to a form that can be compared instruction-by-
instruction as often as possible.

Beyond checking per-instruction equivalence, we allow pro-
gram versions under comparison to differ in ways described by
so-called semantics-preserving change patterns (SPCPs). Our
method is generic in the set of SPCPs to be applied provided
they are described in a particular way that we propose. We
call such SPCPs as effective.

We show that a number of refactoring patterns known in the
literature—in particular, we consider those presented in [9]—
can be handled by our approach even without using SPCPs,
simply due to the use of the considered code transformations.
Moreover, we show that many further patterns from [9] can
be handled using the proposed notion of effective SPCPs. This
applies notably to those patterns that appeared in multiple past
versions of the Linux kernel as our extensive experimental
study in this area shows. Through this study, we also iden-
tify several further change patterns not covered by [9] that
commonly appear and can be handled via effective SPCPs
too. Finally, to further broaden the scope of our approach, we
extend it by a way to handle code relocations that goes beyond
the notion of effective SPCPs.

We implemented our approach in a tool called DIFFKEMP.
We have applied DIFFKEMP on the Linux kernel—both on the
RHEL version and the upstream version—as well as the musl
C standard library (https://musl.libc.org). Our experiments
confirm that DIFFKEMP scales far better than other approaches
for checking semantic equality and that it can indeed safely
verify quite many refactorings and be quite useful in practice.

Overall, we summarize our contributions as follows: (1) We
propose a light-weight approach for checking semantic equiv-
alence of program versions obtained by refactoring that is—to
the best of our knowledge—much more scalable than other
existing approaches for checking semantic equivalence. (2) We
have implemented the proposed method in a new open-source
tool DIFFKEMP that is capable of checking preservation of
semantics of refactored code compiled into the LLVM inter-

https://musl.libc.org


mediate representation. (3) We demonstrate the capabilities of
the approach on several practical applications on large-scale
real-life projects including the Linux kernel (which has the
size in millions of LOC) and the musl C standard library.

Related Work: There is a number of existing works on
static analysis of semantic equivalence—for an overview, see,
e.g., [17]. Some of the approaches were implemented in tools
applied to real-life code, such as RVT [10], SYMDIFF [16],
[14], DISE [21], [2], LLREVE [15], or UC-KLEE [25]. Many
of these tools use a similar general approach—namely, equiv-
alence of functions under comparison is encoded using formu-
lae and/or special program constructions, and a suitable deci-
sion procedure or program verifier is used to prove equality. In
particular, SYMDIFF uses Z3 [6], RVT uses CBMC [5], UC-
KLEE uses KLEE [3]. LLREVE represents function equality
by a set of Horn clauses and uses a Horn solver, such as Z3,
to solve them. DISE is slightly different in that it employs
KLEE to generate function summaries and then compares the
summaries. These approaches build on heavy-weight formal
methods that, despite a lot of advances, do still not scale
enough to allow equivalence checking on large code. This
applies even to one of the latest works in the area [4], based on
semantics-driven alignment of program traces, which scales on
benchmarks from vectorizing compilers up to tens of lines.

On the other hand, there exist light-weight and extremly fast
tools based on text similarity (such as the Unix diff tool)
or on simple abstract-syntax-tree matching [19] that are able
to compare huge code bases in the order of seconds. These
are, typically, able to handle only the simplest semantics-
preserving changes (such as, e.g., variable renaming).

Compared with the mentioned works, our approach lies in
between the two areas. While our method is not as fast as
the simple approaches, it can show equality of much more
complicated refactorings in the order of minutes for a similarly
large code. Also, since we build on light-weight back-end
approaches, our method scales far better than those using
formal methods, at the possible expense of not being able to
show equality of some heavily refactored functions.

There exist still other tools—based, e.g., on comparing
dependence relations [13], abstract semantic trees [23], or
(similarly to our work) control-flow graphs [1]—that also aim
at practical usability on large projects. However, these tools
primarily aim at finding differences between programs and at
describing the differences in the best way possible, typically
not being able to ignore semantics-preserving changes.

Another field of works in this area aims at identification
of refactorings in software: cf., e.g., [22]. These works often
introduce or make use of a pre-defined list of refactoring
patterns. The best known list is probably the Fowler’s cat-
alogue [8], which describes mostly structural refactorings
occurring in object-oriented languages. Refactoring lists for
low-level procedural languages (such as C) are less common—
the most exhaustive that we are aware of is [9]. In our work,
we concentrate on supporting a number of patterns from [9],
extended by several additional types of semantics-preserving

changes occurring in the Linux kernel that are discovered by
our own in-depth study of a number of Linux versions.

Principles of semantics-preserving code transformations and
variable mapping were successfully used in other works too,
e.g., in [7] for so-called on-stack replacement. We, however,
combine these basic ideas with multiple further techniques
(e.g., advanced pattern matching), allowing us to show equiv-
alence of real-life programs with more complex refactorings.

Apart from comparing the semantics of programs, equiva-
lence checking was successfully applied in hardware (see [12]
for an overview), and there exist several industry-level works
on translation validation of compilers [20], [26], [11] too.
These are, however, far from the problems considered here.

II. CHECKING SEMANTIC EQUIVALENCE

Our goal is to develop an as-precise-as-possible but still
highly-scalable method to automatically compare two versions
of a function, typically obtained through refactoring, and
determine whether the semantics of the function is preserved.
The main complexity lies in deciding whether a syntactic
change in the function causes a change in the semantics. For
high scalability, we concentrate on changes that can be handled
on the level of particular instructions or that are instances
of several generic types of changes, which we denote as
semantics-preserving change patterns (SCPCs).

In particular, our method generically supports so-called ef-
fective SPCPs, each of which is specified through defining four
functions that provide: (1) a test indicating potential applicabil-
ity of the SPCP at given starting lines of the compared program
versions, (2) a way to compute code locations succeeding
the given instance of the SPCP, (3) a condition under which
the potential SPCP does indeed preserve semantics, and (4) a
way to compute which program variables of the two program
versions correspond to each other after the SPCP. The idea is
that the initial test (Point 1) should be done by a quick and
efficient analysis of the compared program functions (which
may be quite large), while the method for determining the
actual semantic equality (Point 3) may use a more complex
algorithm since it is used on a substantially smaller code
bounded by the point of detection and the location succeeding
the detected pattern instance (determined in Point 2).

A. Program Representation

We represent functions under comparison using control flow
graphs (CFGs). In particular, since our tool builds on the
LLVM infrastructure, we translate the compared programs into
the LLVM intermediate representation (LLVM IR), in which
each function can be viewed as a single CFG. The following
definition of CFGs is therefore heavily based on the notion of
CFGs defined by LLVM IR.

A CFG is composed of basic blocks connected by edges
representing program branches. Each basic block consists of a
list of instructions. An instruction performs an operation over
a (possibly empty) list of operands and stores its result into
a local variable (if it produces some result). An operand may
be a variable (global or local), a constant, or a function (this



is the case, e.g., for call instructions, in which the callee
is represented as an operand, or for instructions that assign
to function-pointer variables). Each CFG satisfies the static
single assignment (SSA) property requiring that each variable
is assigned to at most once. Therefore, each instruction i
assigns its result into a fresh local variable that we denote vi.
Assignments into global variables are done using the store
instruction. The CFGs are typed—each variable and each
constant has a type. The type system is defined by [18].

Furthermore, to simplify the following presentation, we
introduce the function op that assigns an operation to each
instruction. The set of all operations consists of the different
kinds of instructions in LLVM IR [18].

Each internal instruction of a basic block has exactly one
successor: the instruction immediately following it. A block
ends by a so-called branch instruction or by a terminator
instruction that terminates the function, possibly returning a
value. A branch instruction may have one or two succes-
sors, which are always initial instructions of basic blocks.
Branch instructions with one and two instructions are called
unconditional and conditional branches, respectively. For non-
branching and unconditional branching instructions, we in-
troduce the function succ that, for each such instruction,
defines its successor. For conditional branches, the successor
to be followed at runtime is chosen by evaluating a boolean
condition that is an operand of the instruction. We thus refer to
the two successors as to the true-case and false-case successor
and introduce functions succT and succF that define these
successors for each conditional instruction.

B. Function Equality

Before describing the main idea of our method for proving
semantic equality, we first define what we mean by two func-
tions being semantically equal. The idea is to find so-called
synchronisation points in both functions and to check that the
code between pairs of corresponding synchronisation points
is semantically equal. As we shall see, synchronisation points
will typically but not always be at each instruction. Moreover,
we will show that multiple syntactical transformations must
often be done in order to allow for the typical per-instruction
synchronisation points.

Intuitively, we consider two pieces of code to be semanti-
cally equal if they both terminate and their execution produces
the same output for the same inputs, or they both do not
terminate. Here, by output, we mean values of the output
variables and the final state of the memory; and by input,
values of the input variables and the initial state of the memory.
The memory incorporates both the stack and the heap. The
input and output variables are subsets of all variables used
in the given function. To reflect possible concurrency, we
check that both pieces of code being compared use the same
synchronisation means (locks, shared memory, etc.) in the
same way. We assume that the used synchronisation assures
thread safety, and so we consider sequential executions only.
Similarly, we check that both compared pieces of code use the
same library and system calls in the same way.

Formally, let us have two functions f1 and f2, and, for
i ∈ {1, 2}, let Ii and Vi denote the sets of instructions
and variables used in fi, respectively. We view the problem
of checking semantic equality of f1 and f2 as the problem
of finding two sets of synchronisation points S1 ⊆ I1 and
S2 ⊆ I2 and two synchronisation functions smap : S1 ↔ S2

and varmap : V1 ↔ V2 that represent mappings of synchroni-
sation points and variables, respectively, between f1 and f2.
We consider f1 and f2 to be semantically equal iff, for any
s1, s2 ∈ S1 and any s′1, s

′
2 ∈ S2, all of the following hold:

1) For each variable v ∈ V1 that is used but not defined
between s1 and s2 (a so-called input variable of s1), the
variable varmap(v) is used but not defined between smap(s1)
and smap(s2), i.e., it is an input variable of smap(s1). An
analogical requirement must hold for s′1, s

′
2 and every v′ ∈ V2,

using smap−1 and varmap−1. This requirement may seem
quite strict since the functions may have some input variables
that do not influence the output (and that could thus be left out
from the requirement), but we will use CFG transformations
to eliminate such variables beforehand.

2) For each variable v ∈ V1 defined between s1 and s2 and
used after s2 (a so-called output variable of s2), the variable
varmap(v) is defined between smap(s1) and smap(s2) and
used after smap(s2), i.e., it is an output variable of smap(s2).
Same for s′1, s

′
2 and v′ ∈ V2, using smap−1 and varmap−1.

3) If the value of each input variable vin at s1 equals that
of varmap(vin) at smap(s1) and the state of the memory
at s1 equals that at smap(s1), then, if the code between s1
and s2 is executed and terminates, an execution of the code
between smap(s1) and smap(s2) terminates too, and the value
of each output variable vout at s2 equals that of varmap(vout)
at smap(s2) and the state of the memory at s2 equals that at
smap(s2). Likewise for s′1, s

′
2, using smap−1 and varmap−1.

C. Analysis of Function Equality

We now present the top-level of our algorithm for check-
ing semantic equality of two functions. Using the notions
introduced above, our goal is to find the sets S1 and S2

of synchronisation points and the mapping functions smap
and varmap such that blocks of code between corresponding
pairs of synchronisation points are semantically equal. Proving
such semantic equality is a rather difficult task, especially for
large blocks of code. To cope with this problem, as already
indicated, we use the following two main ideas:

1) We transform the compared functions so that syn-
chronisation points can be defined as often as possible per
instruction. Individual instructions are then quite simple to
compare—intuitively, they should perform the same operations
on operands that are the same or can be mapped to each other.

2) In case a per-instruction synchronisation cannot be
achieved for a block of code, we check whether the compared
blocks match one of the supported SPCPs. If so, we consider
the blocks semantically equal too. The check is based on the
features of effective SPCPs introduced at the beginning of
Section II whose usage is highlighted in the algorithm.



Input: Functions f1, f2
Result: true if f1 is semantically equal to f2, false otherwise

1 run transformations of f1 and f2
2 if |P1| 6= |P2| then return false

// Initialisation of synchronisation maps
3 S1 = {i1in}, S2 = {i2in}
4 smap(i1in) = i2in
5 for 1 ≤ i ≤ |P1| do varmap(p1i ) = p2i
6 for g1 ∈ G1 do
7 varmap(g1) = g2 ∈ G2 s.t. g1 has the same name as g2

// Main loop
8 Q = {(i1in , i2in)}
9 while Q is not empty do

10 take any (s1, s2) from Q
11 p = detectPattern(s1, s2)
12 for each pair (s′1, s

′
2) ∈ succPairp(s1, s2) do

13 if (s′1 ∈ S1 ∨ s′2 ∈ S2) then
14 if smap(s′1) 6= s′2 then return false
15 else continue
16 if p is none then equal = cmpInst(s1, s2)
17 else equal = comparep((s1, s

′
1), (s2, s

′
2))

18 if ¬equal then return false
// Update synchronisation sets and maps

19 S1 = S1 ∪ {s′1}, S2 = S2 ∪ {s′2}, smap(s′1) = s′2
20 update varmap according to p
21 insert (s′1, s′2) to Q
22 return true
Algorithm 1: Checking semantic equivalence of functions

The main workflow of our semantic equivalence checking
is shown in Algorithm 1. The algorithm takes two functions
f1 and f2 as the input. For i ∈ {1, 2}, we let Pi denote the
list of parameters of fi, while Gi and Ci denote the sets of
all global variables and constants used in fi, respectively.

First, a number of code transformations is applied (Line 1)
to the compared functions so that it is easier to define
synchronisation points per instruction. These transformations
are such that they do not change the semantics of the functions.
The most important transformations that we use are constant
propagation, redundant instructions elimination, and dead code
and dead parameter elimination (since changes in unreachable
code do not affect the semantics).

In addition, we run transformations of special calls that
occur in LLVM IR, in particular indirect function calls (i.e.,
calls via function pointers) and calls to assembly code. These
calls are replaced by calls to newly generated functions, so-
called abstractions. Indirect call abstractions are function dec-
larations that have the same parameters as the original indirect
call and, in addition, a new parameter that represents the
called pointer. Assembly code abstractions are functions that
enclose the called assembly code and promote its parameters
into the abstraction function parameters. The purpose of these
generated abstractions will be explained later in this section.
Finally, some transformations (in particular, function inlining
and some related CFG simplifications) are run lazily during
SPCP matching (see Section IV-B for more details).

Thanks to the applied transformations, only those param-
eters that influence the output of the functions are left, and
therefore we consider the functions semantically non-equal if
they have a different number of parameters (Line 2).

1 succPair (s1, s2):
2 if op(s1) = op(s2) = cond.branch then
3 return (succT (s1), succT (s2)), (succF (s1), succF (s2))
4 else if op(s1) 6=cond.branch∧op(s2) 6=cond.branch then
5 return (succ(s1), succ(s2))
6 else yield error
Algorithm 2: Computing successor synchronisation points

Afterwards, the algorithm starts building the sets of synchro-
nisation points and the mapping functions. Since one of our
main goals is high scalability, these are built lazily. Initially,
for each function, the synchronisation set only contains the
first instruction of the entry basic block (denoted i1in and i2in
for f1 and f2, respectively), and these two instructions are
synchronised. The variable mapping is created between pairs
of parameters (based on their order—Line 5) and pairs of
global variables (based on their name—Lines 6–7).

The main loop of the algorithm works with a queue Q of
pairs of synchronisation points. In each iteration, a single pair
(s1, s2) is taken from the queue. The pair is analysed by the
function detectPattern that checks whether some pattern p out
of the supported SPCPs seems applicable. A special value none
is returned if no pattern is applicable (forcing a per-instruction
comparison). The algorithm can be easily generalised to iterate
over multiple patterns possibly applicable at the same time—
we have not included this possibility for brevity and also
because the applicability of our current patterns is exclusive.

Then, the function succPairp(s1, s2) checks where the next
synchronisation points will be placed, i.e., computes the suc-
cessor synchronisation pairs of (s1, s2). We require each pat-
tern to define the behaviour of succPairp. Due to this, the top-
level algorithm does not have to search from where to continue
the analysis after a successful detection of an instance of a
pattern. In our current implementation of the approach, unless
a pair of GEP instructions (i.e., LLVM’s getelementptr
instructions—more details in Section IV-A) is encountered, the
successor points will simply be at the instructions immediately
following (s1, s2). The procedure is, however, prepared to
easily incorporate dealing with comparisons of other larger
code blocks too—should that be needed.

The default implementation of succPair is shown in Al-
gorithm 2. It uses the successor functions from Section II-A
and returns either one or two pairs of synchronisation points
depending on whether a conditional branching follows the
current synchronisation points. If some conditional branching
appears in one of the functions only, the function ends with
an error, causing the comparison to fail as the control flow is
different (this case is not included in Algorithm 1 for brevity).

After choosing the successor pair of synchronisation points,
we first check whether we have already visited one of the
points. If so, we require that the synchronisation points are
already mapped to each other, otherwise the synchronisation
of the control flow is broken, and the functions are not
semantically equal (Lines 13–15).

Subsequently, the blocks of code from the current to the
next synchronisation point in each function are checked to
be indeed semantically equal. If no pattern is used, each



1 cmpInst (i1, i2):
// Assume (o11, . . . , o

1
n1

) and (o21, . . . , o
2
n2

) be the
operand lists of i1 and i2, respectively

2 if op(i1) 6= op(i2) then return false
3 for 1 ≤ k ≤ n1 do

// Variables must be mapped
4 if o1k ∈ V1 ∧ varmap(o1k) 6= o2k then return false

// Constants must be equal
5 else if o1k ∈ C1 ∧ o1k 6= o2k then return false

// Functions must be recursively compared
6 else if o1k is a function then
7 if Alg. 1 (o1k, o

2
k) = false then return false

8 return true
Algorithm 3: Comparing single instructions

of the blocks contains a single instruction, and these are
compared using the cmpInst function defined in Algorithm 3.
The function checks if the instructions perform the same
operation on the same or mapped operands.

Moreover, if the compared instructions use functions as
operands, we run Algorithm 1 for the functions unless they
were compared before. An exception to this are indirect
function calls and calls to assembly code. As already men-
tioned, we replace such calls by calls to so-called abstraction
functions. For an indirect call, only the arguments of the
indirect abstraction function call are compared, leading to a
comparison of both the original arguments and the function
pointers. A comparison of the target functions is started
when they are assigned to the function pointers (since that is
where the functions appear as operands). As for the assembly
abstraction functions, the blocks of assembly code inside them
are compared for literal equality instead of using Algorithm 1.

When a potentially applicable SPCP was detected, the com-
parison of blocks is done using a pattern-specific comparep
function. If the blocks are not compared as equal, the algorithm
ends, claiming the functions not to be semantically equal.

After the semantic comparison, the synchronisation sets and
maps are updated on Lines 19–20. The variable mapping is
updated wrt the SPCP used. If individual instructions were
compared (which is the case when no pattern is used as well
as when most of the currently supported patterns are used), the
update is quite simple as instructions always have at most one
output value represented by the fresh local variable created
by the instruction. Hence, when two instructions i1 and i2
returning a value are compared, the mapping varmap(vi1) =
vi2 between the new local variables is created.

Finally, if all reachable synchronisation points were visited
and no inequality has been found, the functions are considered
semantically equal.

III. SUPPORTED SEMANTICS-PRESERVING CHANGES

The list of SPCPs we concentrate on is inspired by two
sources: (1) the list of refactoring patterns from [9] and (2) our
own extensive study of frequent change patterns that we have
performed on multiple past versions of the Linux kernel.

Concerning the list of [9], we observe that our proposed
approach implicitly allows us to handle a number of patterns.

This is mainly caused by three facts:
1) We use a CFG-based representation of programs, in

which some constructions of high-level languages that look
different in source code are represented the same way. This
allows us to handle the consolidate-conditional, for-into-while,
while-into-for, add-a-typedef, and replace-type patterns.

2) Our method is insensitive to naming of program entities,
which allows it to handle many renaming patterns, in particu-
lar, rename variable/constant/user-defined type/function.

3) The CFG transformations we use effectively “neutralize”
the effect of some change patterns. This is in particular the
case for (i) dead-code elimination that allows us to han-
dle the remove-unused-variable/parameter/function patterns,
(ii) constant propagation that allows us to handle the replace-
value-with-constant pattern, and (iii) memory-to-register pro-
motion that allows us to handle the add-variable and replace-
expression-with-variable patterns.

Hence, we observe that our algorithm in its basic form
(without any explicit patterns) allows us to handle 15 out of
29 refactoring patterns mentioned in [9]. From the rest of the
patterns, we concentrate on those that occur the most often in
real systems code. We support this claim by a study of past
versions of the Linux kernel that we present below.

A. Change Patterns in the Linux Kernel

To derive SPCPs common in Linux, we started by analysing
all versions of the RHEL 7 kernel from 2014–18 (RHEL 7 was
the major RHEL version until 2019). Newer RHEL versions
are then used for our experimental evaluation in Section V.

In particular, for pairs of succeeding releases, we compared
the semantics of functions from the KABI list. We performed
the comparison using our proposed algorithm without any
custom patterns and looked for functions marked as non-
equal. Such functions thus differ in ways other than what
the effect of the 15 implicitly supported patterns described
above can be. Note that the encountered changes need not
appear directly in the function code—they may be caused,
e.g., by a change in a type declaration too. Subsequently, we
manually analysed all the obtained differences and identified
the most common remaining kinds of changes not affecting
the semantics. This way, we obtained the following list of
SPCPs. For each discovered SPCP, we enumerate all patterns
from [9] that it covers. In addition, we note that many of the
SPCPs identified in this section cover additional refactoring
patterns that are not mentioned in [9] (e.g., because they are
kernel-specific or because they are rather complex).

Changes in structure data types: These include changes
in user-defined structures and unions, which often result in a
situation when, e.g., an access to the same structure field yields
a different memory-access offset. This pattern covers two
patterns from [9]: add/rename a structure field. We note that
this pattern has two variants, depending on whether the change
involves changes in nested structures or not (cf. Section IV-A).

Moving code into functions: The code is refactored by
moving parts of it into functions called from where the original



TABLE I: Numbers of SPCPs in KABI functions

RHEL
versions

KABI
funs

Non-dominated
changed
functions

Data
types

Function
splitting

Code
loc.

Enum
values

7.5/7.6 739 112 10 2 2 0
7.4/7.5 734 218 33 13 1 1
7.3/7.4 678 142 6 3 4 0
7.2/7.3 644 223 9 13 2 0
7.1/7.2 551 111 6 4 3 0
7.0/7.1 395 82 2 5 0 2

Sum 888 66 40 12 3

code was. This covers multiple patterns from [9]: extract/inline
function, add/reorder function parameters.

Changes in a source code location: In the Linux kernel
there are macros and built-in functions that allow one to report
the file name and the line number of the current code location.
In case such a function/macro is used and the location has
changed, the semantics stays the same.

Changes of enumeration values: This situation may hap-
pen, e.g., when a new value is added into the middle of an
enumeration type. In such a case, the rest of the values are
shifted and get different numerical values.

Table I shows numbers of appearances of the mentioned
SPCPs in the compared RHEL kernel versions The first col-
umn states the versions of the RHEL kernel being compared.
The second column contains the number of functions on the
KABI list. The third column contains the number of functions,
either from the KABI list or (directly or indirectly) called
from them, that contain a difference and that are not called
solely by some function already containing a difference (in
other words, we do not descend into callees of functions that
contain a difference). Here, note that changes in macros or data
types show up in the code of functions in LLVM IR too. The
remaining columns give numbers of those of the discovered
differences that are caused by the SPCPs described earlier.

Changes in about 13 % of the changed functions are fully
covered by the above described patterns, and the semantics
of these functions did not change. (Usually, the change corre-
sponds to a single pattern, but a few functions were changed
via multiple patterns—hence the given percentage cannot be
obtained directly from Table I; we computed it separately.)
We also analysed the other changes and discovered that 99 %
of them affect the semantics. Changes in the remaining 1 %
typically represent more complicated refactoring.

In addition to the above, we also inspected individual
commits in the Git repository of the Linux kernel upstream
(https://github.com/torvalds/linux) created in past 2 years and
concentrated on the commits that are marked as “refactorings”
in their commit message (i.e., those that are expected not to
change the semantics). We analysed the changes introduced by
these commits and identified two additional frequent SPCPs:

Inverse branching conditions: A branching condition is
replaced by an inverse condition with the branches swapped.
This also applies to loop conditions, thus covering the while-
into-do-while pattern of [9].

Relocated code: A piece of code is relocated into a
different part of a function (e.g., from the beginning of a loop
iteration to before the loop). The relocated code is usually
independent from the code skipped by the relocation. From the
patterns in [9], it covers the contract/extend variable scope.

In total, we have thus identified six SPCPs that we consider
as important in the given context. These SPCPs cover 9 pat-
terns from [9] but are more general, covering some semantics-
preserving changes not covered by [9], yet showing up in the
history of the Linux kernel. In addition, we note that we do not
cover 5 patterns from [9] as we have never encountered them
in our study of Linux. While it should be easy to handle some
of them using effective SPCPs (this is applies to 3 patterns
related to converting a variable into a pointer and vice-versa),
some (in particular convert global variable into parameter and
group a set of variables into a new structure) would require
analysing the global state of the compared programs which
our algorithm currently does not do.

In the below section, we show that all the above identified
six SPCPs can be formulated as effective SPCPs and hence
handled by our algorithm.

IV. HANDLING THE SUPPORTED SPCPS

Our method for comparing the semantics of two functions is
generic in handling effective SPCPs specified by providing the
four functions listed in Section II. We now define these func-
tions for the SPCPs that we identified as frequent in the Linux
kernel through our empirical study presented in Section III-A.
Some of the patterns use default implementations of some of
the functions, which were presented in Section II-C. In such
cases, we do not discuss the functions for the given pattern.
We also propose a specific treatment for the code-relocation
SPCP that goes beyond our notion of effective SPCPs.

A. Changes in Structure Data Types

The most common change that we saw in the Linux kernel
and that results in different code produced by the compiler
while maintaining the semantics is a change of the layout of a
user-defined structure type. In C, a structure type (a structure
or union) consists of a list of fields, each field having its name
and data type. When accessing a particular named field f of a
variable v, compilers translate the name of f into a numerical
offset, which is a number that defines the relative offset of
the address of f from the starting address at which v lies in
memory. In LLVM IR, this is done by the getelementptr
(GEP) instruction, which takes a pointer and an index of the
field and returns a pointer to the required element.

If the layout of a structure type is changed, usage of the type
may be affected in multiple ways: e.g., if a field is added to
or removed from the middle of the structure type, the indices
of all fields up to the end of the type change. As was outlined
earlier, we consider two different variants of this pattern, one
for a simple change of a field offset and the other for a more
complicated change involving changes in nested structures but
leading to accessing the same fields in the end.

https://github.com/torvalds/linux


1) Changed Offset of a Structure Field: When a new field
is added into the middle of a structure type, the fields from the
point of addition to the end are shifted. Accessing such fields
results in different indices generated by the GEP instruction.
To deal with such changes, we provide a special way of
comparing two GEP instructions used to access a structure
field. In particular, we exploit LLVM debugging information
that contains a mapping of field names to field indices. We
then specify the pattern as follows (using the implicit versions
of computing successor pairs and updating maps of variables):

Detection condition: op(s1) = op(s2) = gep and both
GEP instructions access a structure field.

Definition of comparep: The comparison is done using a
slightly modified version of cmpInst from Algorithm 3. When
comparing operands that are GEP indices on Line 5, instead
of comparing the numerical offsets o1k, o2k for equality, we first
retrieve the corresponding field names n1

k, n2
k from debugging

information. Then, we distinguish four possible situations:
• o1k = o2k, n

1
k = n2

k—the operands are equal.
• o1k = o2k, n

1
k 6= n2

k—check if n2
k occurs in the structure

type that contains n1
k. If it does not, then the operands

are equal (the field has very probably been renamed),
otherwise we treat the operands as not equal.

• o1k 6= o2k, n
1
k = n2

k—the offset has been shifted, but
the programmer still accessed the same name. We check
whether there is some pointer arithmetic performed on
the pointers computed as the results of the instructions s1
and s2. If so, the operands are not equal (as the absolute
value of o1k or o2k matters), otherwise they are equal.

• o1k 6= o2k, n
1
k 6= n2

k—the operands are not equal.
2) Different Ways to Access the Same Field: There may

occur situations when the layout of a structure type is changed
in a more complicated way, and the same fields are accessed in
a different manner. An example that often happens in the Linux
kernel is replacement of a field f by a field u of a union
type that contains the original field f and some other field
g. When accessing the field f through u, the final generated
offset is (usually) exactly the same (since f is stored at the
beginning of u), but the access is done using one more field
(and one more GEP instruction in LLVM IR).

In this case, the same semantics is achieved by a different
number of instructions in each of the compared functions.
Thus, this pattern must compare larger blocks of instructions.

Detection condition: op(s1) = op(s2) = gep and there is
a sequence of instructions i1, . . . , in in the first version of the
code where:
• i1 = s1, i.e., the sequence starts from s1,
• for all 1 ≤ k < n, succ(ik) = ik+1 ∧ op(ik) = gep,
• the sequence has a single input variable—the source

pointer accessed by i1,
• the sequence has a single output variable—the variable
vin that is the final pointer computed by the sequence, and

• for all 1 ≤ k ≤ n, all index operands of ik are constant.
Moreover, an analogous sequence (possibly of another length)
of GEP instructions starts from s2. We denote by s′1/s′2 the last

1 comparep (s1, s2):
2 if ¬cmpInst(s1, s2) then
3 if op(s1) = call then inline s1 and simplify
4 if op(s2) = call then inline s2 and simplify
5 insert (s1, s2) to Q // Yield a new comparison of s1, s2
6 return true // The comparison will always continue
Algorithm 4: Handling function refactoring in Algorithm 1

instructions of the sequences starting from s1/s2, respectively.
At least one of the sequences has more than one instruction.

Definition of succPairp: it returns the single pair of
synchronisation points (succ(s′1), succ(s

′
2)).

Definition of comparep: As all indices are constant, we can
compute the exact memory offset that each instruction would
produce. Thus, comparep returns true iff (1) varmap maps the
input variable of s1 to the input variable of s2 and (2) the sum
of all offsets of all instructions is equal for both sequences.

Method for updating varmap: varmap(vs′1) = vs′2 .

B. Moving Code into Functions

Another frequent change that preserves semantics is split-
ting a block of code into pieces and moving (some of them)
into some new (or existing) functions. Such functions are then
called with appropriate parameters from the place where the
original code was. This is a common refactoring process that
usually improves readability and simplifies the code.

As our experiments show, when some code is moved into a
function, the function usually executes exactly the same opera-
tions as the original code. Thus, to handle this kind of changes,
it suffices to find a correct synchronisation between instruc-
tions of the original code and those of the called function. In
order to achieve this, we make use of multiple CFG transfor-
mations with the most important being function inlining:

Detection condition: op(s1) = call ∨ op(s2) = call.
Definition of comparep: The implementation of comparep

is shown in Algorithm 4. If the compared instructions are not
equal and at least one of them is a call, the call is inlined
and a new comparison of the current synchronisation pair is
scheduled since the call instruction is replaced by new code.

The above approach is, however, not always sufficient.
Sometimes, the code is moved into a function containing more
behaviour than the original code, but that behaviour is not
executed for the particular call (e.g., by setting some parameter
to false). The semantics is preserved, but the code produced
by inlining contains more instructions than the original code,
and so a per-instruction synchronisation cannot be achieved.

Therefore, we perform additional semantics-preserving CFG
transformations after the inlining, namely constant propaga-
tion and dead code elimination. Constant propagation may
evaluate some conditions to false, and dead code elimination
will then remove unreachable code, leaving only the code that
can possibly be executed for the particular function call. If
that code performs the same operations as the original code,
our method is subsequently able to show this.

C. Changes in Enumeration Values

In C, the enum keyword allows one to create a list of named
constants. Usually, the numerical values themselves are not



important and when they are changed, it is not considered a
semantic change. Such changes often occur when a new value
is inserted into the middle of an enum. All identifiers after the
added one then get assigned a different value by the compiler.

Detection condition: s1 and s2 are instructions containing
a constant operand that corresponds to an enum identifier.
To detect such a situation, the function analyses debugging
information and collects possible mappings of values to enum
identifiers. Moreover, to determine which enum identifiers are
used at the C line from which the compared instructions were
generated, we use a simple analysis of the C source code
associated with the compared LLVM IR.

Definition of comparep: Instructions are compared via
cmpInst, but if a constant operand corresponding to an enum
identifier is checked, the identifier string is compared instead
of the value1.

D. Changes in Source Code Location

This semantics-preserving change is specific for the Linux
kernel, in particular kernel warning functions. Calls to these
functions contain two kinds of information that can be omitted
without changing the semantics. First, the warning message is
not important. Second, calls to these functions often contain
the line number and absolute path to the C source file where
the call occurs. Nonetheless, a change of such information
does not affect the semantics of the caller function. We handle
this by the following SPCP-specific functions:

Detection condition: op(s1) = op(s2) = call and the
same kernel warning function is called.

Definition of comparep: compare the calls using cmpInst
but do not compare operands that represent a warning message,
a line number, or a file name (we identified a list of such
operands by manually analysing all kernel warning functions).

E. Inverse Branch Conditions

A common pattern that we identified among kernel refactor-
ing commits covers situations when a branching condition is
replaced by its inverse condition. Such a change is semantics-
preserving if the true- and false-case successors of the con-
cerned branching instruction are swapped.

Detection condition: s1 and s2 are comparison instructions
and the produced boolean variables vs1 and vs2 are only used
as conditions to branching instructions b1 and b2, respectively.

Definition of comparep: compare the instructions using
cmpInst, but if the instructions evaluate inverse conditions,
return true and swap the order of successors of b1 and b2.

F. Code Relocations

The last semantics-preserving change whose support we
consider as crucial wrt our study from Section III-A is
relocation of a piece of code into a different part of a function.
For the concerned functions to be semantically equal, it is

1Note that one can construct artificial programs that the described method
would claim semantically equal although they are not. This might happen if the
programs compare enum identifiers with actual constants that they represent.
Such constructs, however, break the purpose of enumeration types and do
usually not occur in real-world code as our experiments show.

18 if ¬equal then
19 if R = [] then // Relocation detection
20 if (R = detectRel(s1, s2, f1)) 6= [] then fr = f1
21 else if (R = detectRel(s1, s2, f2)) 6= [] then fr = f2
22 else return false
23 else // Relocation matching
24 if fr = f1 then sc = s1, s1 = R [0]
25 else sc = s2, s2 = R [0]
26 insert (s1, s2) to Q
27 continue
28 else // Relocation checking
29 if fr = f1 ∧ s1 is the last instruction of R then
30 if (s1, sc) depends on R then return false
31 s1 = sc, insert (s1, s2) to Q
32 else if fr = f2 ∧ s2 is the last instruction of R then
33 if (s2, sc) depends on R then return false
34 s2 = sc, insert (s1, s2) to Q

Algorithm 5: Handling code relocations in Algorithm 1

1 detectRel (s1, s2, fr):
2 backup s1 and s2, R = []
3 while op(s1) 6= branch ∧ op(s2) 6= branch do
4 if cmpInst(s1, s2) = equal then return R
5 if fr = f1 then append s1 to R, s1 = succ(s1)
6 else append s2 to R, s2 = succ(s2)
7 restore s1 and s2
8 return []

Algorithm 6: Detection of code relocations

necessary that the relocated code is independent of the code
that is skipped by the relocation. Currently, we require the
relocated code to be sequential (without branching), but it may
be relocated into any part of the same function. Based on our
experiments with the Linux kernel presented in Section III-A,
this is the most common case for code relocation.

Code relocation cannot be covered by our main algorithm
via the notion of effective SPCPs. The reason is that to handle
it we need multiple interconnected phases as shown below,
and, moreover, we want to apply it with the lowest priority
(i.e., only when no other SPCP is applicable). Therefore, we
handle it as shown in Algorithm 5 that replaces Line 18 in
Algorithm 1. The method works in three phases, namely relo-
cation detection, relocation matching, and relocation checking.

Relocation detection is run if the current pair of synchro-
nisation points is compared as non-equal and no potentially
relocated block R is being processed. For that, the function
detectRel, shown in Algorithm 6, is used. It tries to find a
synchronisation point in one of the functions under comparison
that would match the current synchronisation point in the other
function. If such a synchronisation point is found, the block
of instructions that were skipped during the search is marked
as a potentially relocated block R, and s1 and s2 are moved
such that they are synchronised again. The function in which
the relocated block was found is remembered in fr.

The second phase, relocation matching, is run if the current
pair of synchronisation points is compared as non-equal and
a potentially relocated block R has been previously identified
(i.e., the comparison of the two given functions has arrived to
the location where R is assumed to be relocated). In this case,
the current synchronisation point of fr is remembered in sc
and then moved back to the first instruction of R, with the pair



TABLE II: Checking semantic equivalence of KABI functions

RHEL
versions

KABI
functions

DIFFKEMP verdict:
equal/not equal/

unknown

Total
functions
compared

Total
LOC

compared

Runtime
(mm:ss)

7.5/7.6 739 608/125/6 4,954 138,546 08:15
7.6/7.7 769 636/126/7 5,155 144,971 08:46
7.7/7.8 798 611/178/9 5,319 149,030 08:44
8.0/8.1 471 360/86/25 3,374 85,514 07:16
8.1/8.2 521 335/160/26 3,607 87,722 13:33

(s1, s2) re-inserted into Q. This way, Algorithm 1 will take
care of comparing the relocated code for semantic equality.

Finally, if the equality of the entire block is confirmed,
the relocation checking phase checks if the code that has
been skipped by the relocation (which is the code between
the last instruction of R and the instruction sc from which
the comparison will continue) is not data-dependent on the
relocated block. Two blocks of code are data dependent if
one of the blocks reads a value that is written to by the
other block. If the blocks are independent, the relocation is
semantically equal, and the comparison continues normally
from the remembered synchronisation point sc.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented the proposed methods in a tool called
DIFFKEMP. The tool is able to automatically compare the
semantics of functions from two different versions of a project
compiled into LLVM IR. Moreover, for projects written in
C (such as the Linux kernel), which are the primary target
of DIFFKEMP, it is able to precisely locate the C source
symbol (a function, a macro, or a type) that causes the
detected semantic difference. Currently, DIFFKEMP supports
all versions of Clang/LLVM from 5 to 10. It is distributed as
source code2, an RPM package3, or a Docker container4.

We have performed several experiments with DIFFKEMP
in order to demonstrate capabilities of the proposed methods.
The experiments and the results are presented below.

Experiment 1—KABI functions: As mentioned earlier, the
ability of our tool to detect undesirable changes in a software
project may be particularly useful for developers of those
Linux distributions that aim at stability and compatibility. One
of such distributions is the Red Hat Enterprise Linux (RHEL)
whose KABI functions, cf. Section I, should be stable across
minor RHEL releases. A change of the semantics of a KABI
function may lead into a compatibility breakage. To show that
DIFFKEMP can indeed be helpful to ensure that this does not
happen, we used it to check preservation of the semantics of
KABI functions on the 7 most recently released versions of
RHEL. Table II shows the obtained results.

For each pair of the kernel versions, Column 2 shows the
number of KABI symbols that were compared. Column 3
displays the number of functions that are claimed by DIFF-
KEMP to be semantically equal, non-equal, as well as those
whose equality could not be determined. The last kind of result

2Source code is available from: https://github.com/viktormalik/diffkemp.
3https://copr.fedorainfracloud.org/coprs/viktormalik/diffkemp/
4https://hub.docker.com/r/viktormalik/diffkemp

occurred typically in cases in which DIFFKEMP was not able
to find the function’s definition in the kernel source (some
functions are, e.g., generated during kernel compilation from
macros). In all experiments, not a single function comparison
ended with a tool crash nor the tool timed out.

Furthermore, we manually inspected the functions claimed
by DIFFKEMP to be non-equal, and we have found at most
units of (for some versions even zero) functions whose se-
mantics seems unchanged. As far as we can say, the changes
were mostly security fixes or bug fixes; they should not break
anything in applications relying on KABI, but they indeed
change the semantics to some degree as correctly announced
by DIFFKEMP. Checking the potential impact of such semantic
changes is left for the developers. However, the results clearly
demonstrate that DIFFKEMP heavily reduces the amount of
the human effort needed—while we were able to check the
changed functions in a reasonable amount of time (each pair of
versions took a few hours, relying on the changes highlighted
by DIFFKEMP), this would be impossible if one had to inspect
all functions potentially reachable from some KABI symbol—
their exact numbers are given in Column 4.

To further manifest the scope of the task performed in this
experiment, Column 5 gives the total number of compared
lines of C code. The last column gives the execution time that
DIFFKEMP, run on a 4 core, 2.6 GHz Intel Xeon Ivy Bridge
machine with 8 GB RAM, spent on comparing the given pair
of versions compiled to LLVM IR (the compilation time is not
included). It shows that DIFFKEMP is able to check semantic
equality for a huge amount of code in the order of minutes,
which is sufficient, e.g., to integrate it into the continuous
integration process.

Experiment 2—Refactoring commits in the Linux kernel:
In our second experiment, we apply DIFFKEMP on various
refactorings of the Linux kernel that produced code that is
syntactically different but should have the same semantics. In
particular, we took the last 42 commits (as of May 2020) from
the upstream kernel containing the word “factor” or “refactor”
in the commit message and compared the semantics of the
functions changed by each commit.

Prior to running the experiment, we manually investigated
the commits and discovered that, despite the commits are
marked as refactorings, many of them actually contain a se-
mantic difference. These are caused, e.g., by added assertions,
safety checks (such as a check that a pointer is not NULL
before dereferencing it), mutex locking, or by the fact that
the new version of the function covers more behaviour than
the original version did. Out of 22 such functions DIFFKEMP
correctly identified all to be semantically not equal. The
remaining 20 functions are indeed semantically equal. From
them, DIFFKEMP was able to confirm the equality in 50 % of
the cases. The rest of the commits contain more complicated
refactorings that are beyond the capabilities of the light-weight
approach of DIFFKEMP. Such changes seem to require a
heavier-weight approach, perhaps relying on more complex
formal methods, where, however, the scalability is a problem
(as indicated also by Experiment 4 presented later on).

https://github.com/viktormalik/diffkemp
https://copr.fedorainfracloud.org/coprs/viktormalik/diffkemp/
https://hub.docker.com/r/viktormalik/diffkemp


TABLE III: Analysis of the musl C standard library functions

musl libc
versions

diff
chunks

Semantically equal Semantically not equal
DIFFKEMP DIFFKEMP

equal not equal (FP) equal (FN) not equal

1.1.14/.15 138 107 3 0 28
1.1.15/.16 149 74 4 0 71
1.1.16/.17 163 37 3 0 123
1.1.17/.18 2 0 0 0 2
1.1.18/.19 133 62 0 0 71
1.1.19/.20 199 77 6 0 116
1.1.20/.21 598 470 12 0 116
1.1.21/.22 118 33 1 0 84

All in all, this experiment demonstrates another valuable
use case of DIFFKEMP—it can be used as a pre-processing
tool when reviewing whether a change is truly semantics-
preserving. In such an application, DIFFKEMP is able to
handle a significant number of changes (in our case 50 %)
that do not need to be reviewed anymore (either manually or
by other, more costly, approaches).

Experiment 3—The musl Standard C library: Even
though the main desired application of DIFFKEMP is on the
Linux kernel, the methods it implements are generic and appli-
cable on any project compiled into LLVM IR. We demonstrate
this in our third experiment where we check preservation of the
semantics of library functions from the C standard library. For
simplicity, we chose the musl libc implementation since there
exists a project that allows this library to be compiled into
LLVM IR (https://github.com/SRI-CSL/musllvm). We took
the last 9 versions and compared the semantics of all exported
functions. Then, we compared the differences identified by
DIFFKEMP with the set of all syntactic differences obtained
from the versioning system by using the diff command
(since we built the project for x86, we excluded the differences
for non-x86 architectures). Table III shows the results.

For each pair of versions, the table shows the total number
of diff chunks obtained from the versioning system as
described above (Column 2). We use chunks since they give a
sufficient granularity (often, a single chunk represents a single
change) while their number is quite simple to obtain. The
following two columns show the numbers of chunks that do
not change the semantics (as determined by a manual analysis)
and that were marked by DIFFKEMP as equal (Column 3) or
as not equal (Column 4). The results in Column 4 represent
false positives (FP) where a chunk was determined to be
semantically different although it is not. The number of such
results is quite low for each pair of versions5.

The last two columns of Table III show numbers of semanti-
cally different chunks (again, determined manually) that were
marked by DIFFKEMP as equal (Column 5) and not equal
(Column 6). Column 5 represents false negative (FN) results,
where a differing chunk is not identified. We may observe that
DIFFKEMP produced no such result.

Overall, this experiment shows that DIFFKEMP can success-
fully identify a large number of syntactic differences to be

5We admit that the last column of the table may include some (perhaps
units of) complicated refactorings for which, during our manual analysis, we
could have failed to see that they preserve the semantics.

semantics-preserving (for some versions, there is more than
80 % of such differences) in a huge real-world project while
providing a relatively small number of false results.

Experiment 4—A comparison with other tools: To com-
pare DIFFKEMP with some other existing tool for checking
semantic equivalence, we considered the tools mentioned in
Section I. As our first choice to compare with, we took the
LLREVE tool [15] as it is recent and open-source. Moreover,
it runs on Linux and uses LLVM IR, which allowed us to use
our tooling for compiling the Linux kernel into LLVM IR. We
chose 30 functions from our previous experiments, including
both functions where DIFFKEMP succeeds as well as fails to
provide a correct result, and compared their semantics using
LLREVE. Unfortunately, both the Linux kernel and the musl
C library use program constructions that LLREVE does not
support (such as calls via function pointers, inline assembly
code, or floating-point data types). Due to this, LLREVE
crashed for a large number of programs. Using various tweaks,
we were able to run it on several examples; however, out of
these, only a single comparison succeeded (here, LLREVE
confirmed the result of DIFFKEMP)—the rest timed out (on a
30-seconds time-out). This demonstrates that the complexity
and the size of the comparison is too large for a tool based
on heavy-weight formal methods.

As the second tool, we chose SYMDIFF [16] as it is also
quite recent and open-source. However, SYMDIFF uses the
Boogie Verification Language as its internal representation
and the available compilers are not able to compile the
Linux kernel. We tried to use an LLVM-to-Boogie translation
provided by the SMACK formal verification tool [24], but,
despite all our efforts, we were unable to get the considered
programs into a form that SYMDIFF could handle.

VI. SUMMARY AND FUTURE WORK

We have proposed a light-weight and highly scalable ap-
proach to automatically checking semantic equivalence of
functions in large-scale industrial programs. Our method is
aimed at showing equality of programs containing semantics-
preserving changes typically resulting from refactoring. In
total, it handles 24 out of 29 patterns from the list of common
C refactoring patterns introduced in [9], and, in addition,
several other semantics-preserving change patterns common in
the Linux kernel. Our experiments with the DIFFKEMP tool
implementing our approach show that it is able to successfully
analyse large projects, such as the Linux kernel, reasonably
fast and with not many false results.

Existing approaches based on heavier-weight formal roots
can, in theory, show equality of more functions, but their
scalability is limited. However, an interesting direction of
future work is to use results from DIFFKEMP to simplify
the programs under comparison to small fragments of code
considered non-equal by DIFFKEMP and then compare these
fragments by some heavier-weight approach.

Acknowledgement: The authors were supported by the
project 20-07487S of the Czech Science Foundation and the
FIT BUT internal project FIT-S-20-6427.

https://github.com/SRI-CSL/musllvm


REFERENCES

[1] APIWATTANAPONG, T., ORSO, A., AND HARROLD, M. J. A differenc-
ing algorithm for object-oriented programs. In Proceedings of the 19th
International Conference on Automated Software Engineering (2004),
IEEE, pp. 2–13.

[2] BACKES, J., PERSON, S., RUNGTA, N., AND TKACHUK, O. Regression
verification using impact summaries. In International SPIN workshop
on Model Checking Software (Berlin, Heidelberg, 2013), vol. 7976,
Springer Berlin Heidelberg, pp. 99–116.

[3] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (USA, 2008), USENIX Association,
p. 209–224.

[4] CHURCHILL, B., PADON, O., SHARMA, R., AND AIKEN, A. Semantic
program alignment for equivalence checking. In Proceedings of the
40th Conference on Programming Language Design and Implementation
(New York, NY, USA, 2019), Association for Computing Machinery,
p. 1027–1040.

[5] CLARKE, E., KROENING, D., AND LERDA, F. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction
and Analysis of Systems (Berlin, Heidelberg, 2004), Springer Berlin
Heidelberg, pp. 168–176.

[6] DE MOURA, L., AND BJØRNER, N. Z3: An efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (Berlin, Heidelberg, 2008), Springer-Verlag, p. 337–340.

[7] D’ELIA, D. C., AND DEMETRESCU, C. On-stack replacement, distilled.
In Proceedings of the 39th Conference on Programming Language
Design and Implementation (2018), pp. 166–180.

[8] FOWLER, M. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[9] GARRIDO, A. Software refactoring applied to C programming language.
PhD thesis, University of Illinois, Urbana-Champaign, 2000.

[10] GODLIN, B., AND STRICHMAN, O. Regression verification. In Pro-
ceedings of the 46thAnnual Design Automation Conference (New York,
NY, USA, 2009), Association for Computing Machinery, p. 466–471.

[11] HAWBLITZEL, C., LAHIRI, S. K., PAWAR, K., HASHMI, H., GOKBU-
LUT, S., FERNANDO, L., DETLEFS, D., AND WADSWORTH, S. Will
you still compile me tomorrow? static cross-version compiler validation.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (New York, NY, USA, 2013), Association for Computing
Machinery, p. 191–201.

[12] HUANG, S.-Y., AND CHENG, K.-T. Formal Equivalence Checking and
Design DeBugging. Kluwer Academic Publishers, USA, 1998.

[13] JACKSON, D., AND LADD, D. A. Semantic diff: A tool for summarizing
the effects of modifications. In Proceedings of theInternational Confer-
ence on Software Maintenance (USA, 1994), IEEE Computer Society,
p. 243–252.

[14] KAWAGUCHI, M., LAHIRI, S., AND REBELO, H. Conditional equiva-
lence. Tech. Rep. MSR-TR-2010-119, October 2010.

[15] KIEFER, M., KLEBANOV, V., AND ULBRICH, M. Relational program
reasoning using compiler IR. In Proceedings of the 8th Working
Conference on Verified Software: Theories, Tools, and Experiments
(Cham, 2016), S. Blazy and M. Chechik, Eds., Springer International
Publishing, pp. 149–165.

[16] LAHIRI, S., HAWBLITZEL, C., KAWAGUCHI, M., AND REBELO, H.
SymDiff: A language-agnostic semantic diff tool for imperative pro-
grams. In International Conference on Computer Aided Verification
(Tool description) (Berlin, Heidelberg, 2012), Springer Berlin Heidel-
berg, pp. 712–717.

[17] LAHIRI, S. K., VASWANI, K., AND HOARE, C. A. R. Differential static
analysis: Opportunities, applications, and challenges. In Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research
(New York, NY, USA, 2010), Association for Computing Machinery,
p. 201–204.

[18] LATTNER, C., AND ADVE, V. LLVM language reference manual, 2020.
[19] NEAMTIU, I., FOSTER, J. S., AND HICKS, M. Understanding source

code evolution using abstract syntax tree matching. In Proceedings of
the 2005 international workshop on Mining software repositories (2005),
pp. 1–5.

[20] NECULA, G. C. Translation validation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (New York, NY, USA, 2000),
Association for Computing Machinery, p. 83–94.

[21] PERSON, S., DWYER, M. B., ELBAUM, S., AND PÃSÃREANU, C. S.
Differential symbolic execution. In Proceedings of the 16thACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(New York, NY, USA, 2008), Association for Computing Machinery,
p. 226–237.

[22] PRETE, K., RACHATASUMRIT, N., SUDAN, N., AND KIM, M.
Template-based reconstruction of complex refactorings. In Proceedings
of the 2010 IEEE International Conference on Software Maintenance
(2010), pp. 1–10.

[23] RAGHAVAN, S., ROHANA, R., LEON, D., PODGURSKI, A., AND AU-
GUSTINE, V. Dex: a semantic-graph differencing tool for studying
changes in large code bases. In Proceedings of the 20th International
Conference on Software Maintenance (USA, 2004), IEEE Computer
Society, pp. 188–197.

[24] RAKAMARIĆ, Z., AND EMMI, M. SMACK: Decoupling source lan-
guage details from verifier implementations. In Proceedings of the 26th
International Conference on Computer Aided Verification (Cham, 2014),
Springer International Publishing, pp. 106–113.

[25] RAMOS, D. A., AND ENGLER, D. R. Practical, low-effort equivalence
verification of real code. In Proceedings of the 23rd International
Conference on Computer Aided Verification (Berlin, Heidelberg, 2011),
Springer-Verlag, p. 669–685.

[26] TRISTAN, J.-B., GOVEREAU, P., AND MORRISETT, G. Evaluating
value-graph translation validation for LLVM. vol. 46, pp. 295–305.


	Introduction
	Checking Semantic Equivalence
	Program Representation
	Function Equality
	Analysis of Function Equality

	Supported Semantics-Preserving Changes
	Change Patterns in the Linux Kernel

	Handling the Supported SPCPs
	Changes in Structure Data Types
	Changed Offset of a Structure Field
	Different Ways to Access the Same Field

	Moving Code into Functions
	Changes in Enumeration Values
	Changes in Source Code Location
	Inverse Branch Conditions
	Code Relocations

	Implementation and Experiments
	Summary and Future Work
	References

