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| Introduction | n

G that satisfies
a condition
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| Classical Workspace Theorem i

Phrase-Structure Grammars
A phrase-structure grammaris a quadruple
G=(N,T,P,S)

where
¢ Nis an alphabet of nonferminals,
 Tis an alphabet of terminals (NN T = (),
o Pis afinite set of rules of the form

X—=Y

where x e (NUT)*N(NUT)*and y € (NUT)*,
e S e Nisthe starting nonterminal.
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| Classical Workspace Theorem | i

Phrase-Structure Grammars

Definition
The relation of a direct derivation, denoted by =, is defined as

follows:
uxv = uyvin G
if and only if

e u,ve (NUT)*,
e Xx—>yeP.

Definition
The language of G, denoted by L(G). is defined as

(G)={weT"|S="w}
where =* is the reflexive-transitive closure of =.

RE: the family of recursively enumerable languages
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| Classical Workspace Theorem | o
Context-Sensitive Grammars

A phrase-structure grammar G = (N, T, P, S) isa
context-sensitive grammar if every x — y € P is of the form

UAV — uzv

where u,ve (NUT)*, Ae N,andze (NUT)".

CS: the family of context-sensitive languages
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| Classical Workspace Theorem | w
Basic Idea

a phrase-structure
grammar G

a phrase-structure
grammar G that satisfies
the workspace condition
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| Classical Workspace Theorem | i

Theorem

Let G = (N. T, P,S) be a phrase-structure grammar. If there
exists some k > 1 such that for every (nonempty) w € L(G).
there exists a derivation

S=X1=2>X%=> =X =W

where
x| < k|w|
forall1 < i< n, then
L(G) e CS
k times
Xl < [Ww - W

Workspace Theorems for Regular-Controlled Grammars | 8/24



| New Workspace Theorem |

Context-Free Grammars

A phrase-structure grammar G = (N, T, P, S) is a context-free
grammar if every x — y € P safisfies

xeN
If UAV = uyv by r = (A — y) € P, then we write

UAV = uyvV [r]

If S= X [n] = - = Xn [fn]. Then we write

S="Xp [ 1]

CF: the family of context-free languages
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| New Workspace Theorem |

Regular-Controlled Grammars
A regular-confrolled (context-free) grammaris a pair
H=(G,R)

where
o G=(N,T,P,S) is a context-free grammar,
e R C P*is aregular confrol language.

The language generated by H, denoted by L(H), is defined as
L(H) ={w e T* | S=* w[g] with g € R}
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| New Workspace Theorem |

Example of a Regular-Controlled Grammar

Consider the following regular-controlled grammar H:

1. S— ABC 5:A—¢
2: A= 0A 6:- B¢
3: B— bB =
4: C — cC

R = {1}{234}*{567}
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| New Workspace Theorem |
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| New Workspace Theorem |

Example of a Regular-Controlled Grammar

Consider the following regular-controlled grammar H:

1. S— ABC 5:A—¢
2: A= 0A 6:- B¢
3: B— bB =
4: C — cC

R = {1}{234}*{567}

S = ABC = aABC = aAbBC = aAbBcC = abBcC = abcC
= abc

L(H) = {a"b"c" | n> 0}
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| New Workspace Theorem i

Denotation of Language Families

RC: the family of languages generated by regular-controlled
grammars

RC™°: the family of languages generated by regular-controlled
grammars without erasing rules

A—e
RE: the family of recursively enumerable languages
CS: the family of context-sensitive languages

CF: the family of context-free languages
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| New Workspace Theorem i

Relationships Between Language Families

RC

RC—

CF

Workspace Theorems for Regular-Controlled Grammars | 13/24




| New Workspace Theorem |

Basic Idea

Definition

A regular-controlled grammar H works within a k-limifed
workspace provided that for all (nonempty) w € L(H), there
exists a derivation S =* w in which every sentential form x
satisfies the following condition:

for every occurrence of a symbol in x which is not erased,
Xx contains at most k occurrences of symbols which are erased.

are erased

N

X = U,a;U,a,U, ...a,u, kla,a,...a,| = |uyu;...u,|

L1

are not erased
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| New Workspace Theorem |

Example

Consider the regular-controlled grammar H:

1. S— ABC 5:A—e
2: A— aA 6:B— ¢
3: B— bB 7 — i
4: C— cC

R = {1}{234}*{567}
For every a"b"c" € L(H), where n > 1, there exists

S=*ad"Ab"Bc"C =* a"b"c" [g] with g € R
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| New Workspace Theorem |

Example

Consider the regular-controlled grammar H:

1. S— ABC 5:A—e
2: A— aA 6:B— ¢
3: B— bB 7 — i
4: C— cC

R = {1}{234}*{567}
For every a"b"c" € L(H), where n > 1, there exists

S=*ad"Ab"Bc"C =* a"b"c" [g] with g € R

Hence, H works within a 1-limited workspace.
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| New Workspace Theorem |

Let H be a regular-controlled grammar working within
a k-limited workspace, for some k > 0. Then,

L(H) e RC®

a regular-controlled
grammar H

a regular-controlled grammar H
working within a k-limited
workspace
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| Idea Behind the Proof i

We use compound nonterminals of the form

X,y)
where
o X is asymbol that is not erased throughout the rest of the
derivation,

e yis a k-limited string of symbols that are erased throughout
the rest of the derivation.
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| Idea Behind the Proof i

We use compound nonterminals of the form

X,y)
where
o X is asymbol that is not erased throughout the rest of the
derivation,

e yis a k-limited string of symbols that are erased throughout
the rest of the derivation.

lllustration

(A, DE)(b,e){b, A)
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| Idea Behind the Proof i

© Foreach A — xpXix1XoXs - - - XmXm and (A, y), we infroduce

(A V) = (X9, XXy -+ Xm){(Xo, €) - -+ (Xm, €)
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| Idea Behind the Proof i

@ Foreach A — X X1x1XoX2 - - - XmXm and (A, v}, we infroduce

(A, vy = (X1, ¥XoX1 -+ - Xm) (X, &) - - - (X, &)

lllustration

For A — agA and (A, e), we infroduce

(Ae) = (a,e)(Are)
(Ag) = (a,A)
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| Idea Behind the Proof i

® Foreach A — y and (X, UAv), we infroduce

(X, UAV) — (X, uyv)
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| Idea Behind the Proof i

® Foreach A — y and (X, UAv), we infroduce

(X, UAV) — (X, uyv)

lllustration

For A — BC and (a, AD), we introduce

(a, AD) — (a, BCD)
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| Idea Behind the Proof i

® Foreach A — y and (X, UAv), we infroduce

(X, UAV) — (X, uyv)

lllustration

For A — BC and (a, AD), we introduce

(a, AD) — (a, BCD)

lllustration

For A — ¢ and (a, AD), we infroduce

(a,AD) = (a, D)
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| Idea Behind the Proof i

® For each (X, uAv) and (Y, y), we infroduce

(X, UAVY — (X, uv)
Yoy = (Y vA)
+ regulation!
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| Idea Behind the Proof i

® Foreach (X, uAv) and (Y, y), we introduce

(X, UAVY — (X, uv)
Yoy = (Y vA)
+ regulation!

lllustration

For (C, AD) and (a, B), we infroduce

(C,AD) — (C,D)
(a,B)  — (a,BA)
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| Idea Behind the Proof i

® For each terminal a, we infroduce

(a,e) —» a
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| Idea Behind the Proof i

@ For each terminal a, we infroduce

(a,e) —» a

[llustration

For g, b, ¢, we introduce
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| Example of the Construction |

Consider the regular-controlled grammar H:

1: S — ABC 5: A= ¢
2: A= 0A 6:B— ¢
3: B— bB 7o
4. C = cC

(S,¢€)
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| Example of the Construction |
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| Example of the Construction |

Consider the regular-controlled grammar H:
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| Example of the Construction |

Consider the regular-controlled grammar H:

1: S — ABC 5:A— ¢

2: A= 0A 6:B— ¢

3: B— bB 7o

4: C - cC

(S5,e) = (A e)B,e){C,e) [(S,e) = (A, e)(B,e)(C,e)]
= (0,A)(B,e)(C,e) [(Ae) = (a,A)]
= (a,A)(b,B){C,e) [(B,e)— (b,B)]
= (a,A)(b,B)(c,C) [(C,e) = (c,C)]
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| Example of the Construction
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| Concluding Remarks i

e Regular-controlled grammars with appearance checking.
o Workspace theorems for other regulated grammairs.

e Does the new workspace theorem hold for the classical
condition as well?
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