Workspace Theorems for Regular-Controlled Grammars

Alexander Meduna

Brno University of Technology, Faculty of Information Technology Božetěchova 2, 612 00 Brno, Czech Republic http://www.fit.vutbr.cz/~meduna

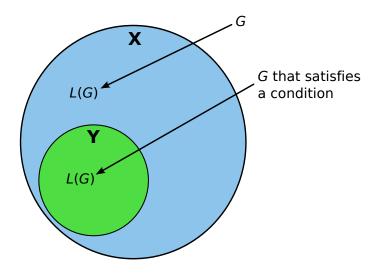
Alexander Meduna and Petr Zemek.

Workspace Theorems for Regular-Controlled Grammars.

Theoretical Computer Science, 2011 (to appear)

Outline

- Introduction
- Classical Workspace Theorem
- New Workspace Theorem
- Idea Behind the Proof
- Concluding Remarks and Discussion



Phrase-Structure Grammars

Definition

A phrase-structure grammar is a quadruple

$$G = (N, T, P, S)$$

where

- N is an alphabet of nonterminals,
- T is an alphabet of terminals $(N \cap T = \emptyset)$,
- P is a finite set of rules of the form

$$X \rightarrow Y$$

where $x \in (N \cup T)^* N(N \cup T)^*$ and $y \in (N \cup T)^*$,

• $S \in N$ is the starting nonterminal.

Phrase-Structure Grammars

Definition

The relation of a *direct derivation*, denoted by \Rightarrow , is defined as follows:

$$uxv \Rightarrow uyv \text{ in } G$$

if and only if

- $u, v \in (N \cup T)^*$,
- $x \rightarrow y \in P$.

Definition

The language of G, denoted by L(G), is defined as

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

where \Rightarrow^* is the reflexive-transitive closure of \Rightarrow .

RE: the family of recursively enumerable languages

Context-Sensitive Grammars

Definition

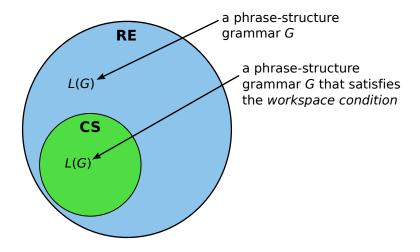
A phrase-structure grammar G = (N, T, P, S) is a context-sensitive grammar if every $x \to y \in P$ is of the form

$$uAv \rightarrow uzv$$

where $u, v \in (N \cup T)^*$, $A \in N$, and $z \in (N \cup T)^+$.

CS: the family of context-sensitive languages

Basic Idea



Theorem

Let G = (N, T, P, S) be a phrase-structure grammar. If there exists some $k \ge 1$ such that for every (nonempty) $w \in L(G)$, there exists a derivation

$$S \Rightarrow X_1 \Rightarrow X_2 \Rightarrow \cdots \Rightarrow X_n = W$$

where

$$|x_i| \leq k|w|$$

for all $1 \le i \le n$, then

$$L(G) \in \mathbf{CS}$$

$$|X_i| \leq |W W \cdots W|$$

Context-Free Grammars

Definition

A phrase-structure grammar G = (N, T, P, S) is a context-free grammar if every $x \to y \in P$ satisfies

$$x \in N$$

If $uAv \Rightarrow uyv$ by $r = (A \rightarrow y) \in P$, then we write

$$uAv \Rightarrow uyv [r]$$

If $S \Rightarrow x_1 [r_1] \Rightarrow \cdots \Rightarrow x_n [r_n]$, then we write

$$S \Rightarrow^* X_n [r_1 \cdots r_n]$$

CF: the family of context-free languages

Regular-Controlled Grammars

Definition

A regular-controlled (context-free) grammar is a pair

$$H = (G, R)$$

where

- G = (N, T, P, S) is a context-free grammar,
- $R \subseteq P^*$ is a regular control language.

Definition

The language generated by H, denoted by L(H), is defined as

$$L(H) = \left\{ w \in T^* \mid S \Rightarrow^* w \ [\varrho] \text{ with } \varrho \in R \right\}$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

$$4\colon C\to cC$$

$$R = \{1\}\{234\}^*\{567\}$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

$$7: C \rightarrow \varepsilon$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

$$4\colon C\to cC$$

$$R = \{1\}\{234\}^*\{567\}$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

$$7: C \rightarrow \varepsilon$$

Example of a Regular-Controlled Grammar

Example

Consider the following regular-controlled grammar H:

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

$$R = \{1\}\{234\}^*\{567\}$$

S

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

$$7: C \rightarrow \varepsilon$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

$$4\colon C\to cC$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

$$7\colon \textbf{\textit{C}}\to\varepsilon$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow \alpha A$$

$$3: B \rightarrow bB$$

$$4: C \rightarrow cC$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow \alpha A$$

$$3: B \rightarrow bB$$

$$4: C \rightarrow cC$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow \alpha ABC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

$$4: C \rightarrow cC$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow \alpha ABC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

$$4\colon C\to cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow \alpha A$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow \alpha A$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

$$7: C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow \alpha A$$

$$3: B \rightarrow bB$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC \Rightarrow abBcC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow \alpha A$$

$$3: B \rightarrow bB$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC \Rightarrow abBcC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC \Rightarrow abBcC \Rightarrow abcC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC \Rightarrow abBcC \Rightarrow abcC$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC \Rightarrow abcC \Rightarrow abcC \Rightarrow abc$$

Example of a Regular-Controlled Grammar

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow \alpha A$$

$$3: B \rightarrow bB$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$R = \{1\}\{234\}^*\{567\}$$

$$S \Rightarrow ABC \Rightarrow aABC \Rightarrow aAbBC \Rightarrow aAbBcC \Rightarrow abBcC \Rightarrow abcC \Rightarrow abc$$

$$L(H) = \left\{ a^n b^n c^n \mid n \ge 0 \right\}$$

Denotation of Language Families

RC: the family of languages generated by regular-controlled grammars

 $RC^{-\varepsilon}$: the family of languages generated by regular-controlled grammars without *erasing rules*

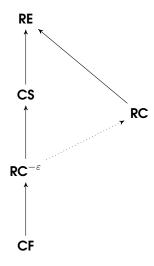
$$A \rightarrow \varepsilon$$

RE: the family of recursively enumerable languages

CS: the family of context-sensitive languages

CF: the family of context-free languages

Relationships Between Language Families



Basic Idea

Definition

A regular-controlled grammar H works within a k-limited workspace provided that for all (nonempty) $w \in L(H)$, there exists a derivation $S \Rightarrow^* w$ in which every sentential form x satisfies the following condition:

for every occurrence of a symbol in x which is not erased, x contains at most k occurrences of symbols which are erased.

are erased
$$x = u_0 a_1 u_1 a_2 u_2 \dots a_n u_n$$
are not erased

$$k|\mathbf{a}_1\mathbf{a}_2...\mathbf{a}_n| \geq |u_0u_1...u_n|$$

Example

Example

Consider the regular-controlled grammar H:

1:
$$S \rightarrow ABC$$

5:
$$A \rightarrow \varepsilon$$

$$2: A \rightarrow aA$$

6:
$$B \rightarrow \varepsilon$$

$$3: B \rightarrow bB$$

7:
$$C \rightarrow \varepsilon$$

$$4: C \rightarrow cC$$

$$R = \{1\}\{234\}^*\{567\}$$

For every $a^nb^nc^n \in L(H)$, where $n \ge 1$, there exists

$$S \Rightarrow^* a^n A b^n B c^n C \Rightarrow^* a^n b^n c^n [\varrho]$$
 with $\varrho \in R$

Example

Example

Consider the regular-controlled grammar H:

1:
$$S \rightarrow ABC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B \rightarrow \varepsilon$$

$$3: B \rightarrow bB$$

$$7 \cdot C \rightarrow \varepsilon$$

$$4: C \rightarrow cC$$

$$f: C \rightarrow$$

$$R = \{1\}\{234\}^*\{567\}$$

For every $a^n b^n c^n \in L(H)$, where $n \ge 1$, there exists

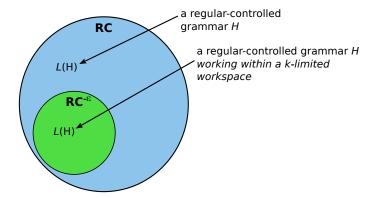
$$S \Rightarrow^* a^n A b^n B c^n C \Rightarrow^* a^n b^n c^n [\varrho]$$
 with $\varrho \in R$

Hence, H works within a 1-limited workspace.

Theorem

Let H be a regular-controlled grammar working within a k-limited workspace, for some $k \ge 0$. Then,

$$L(H) \in \mathbf{RC}^{-\varepsilon}$$



Idea Behind the Proof

We use compound nonterminals of the form

$$\langle X, y \rangle$$

where

- X is a symbol that is not erased throughout the rest of the derivation.
- y is a k-limited string of symbols that are erased throughout the rest of the derivation.

Idea Behind the Proof

We use compound nonterminals of the form

$$\langle X, y \rangle$$

where

- X is a symbol that is not erased throughout the rest of the derivation,
- *y* is a *k*-limited string of symbols that are erased throughout the rest of the derivation.

Illustration

$$\langle A, DE \rangle \langle b, \varepsilon \rangle \langle b, A \rangle$$

Idea Behind the Proof

1) For each $A \to x_0 X_1 x_1 X_2 x_2 \cdots X_m x_m$ and $\langle A, \mathbf{y} \rangle$, we introduce

$$\langle A, y \rangle \to \langle X_1, y X_0 X_1 \cdots X_m \rangle \langle X_2, \varepsilon \rangle \cdots \langle X_m, \varepsilon \rangle$$

1) For each $A \to x_0 X_1 x_1 X_2 x_2 \cdots X_m x_m$ and $\langle A, \mathbf{y} \rangle$, we introduce

$$\langle A, y \rangle \rightarrow \langle X_1, y X_0 X_1 \cdots X_m \rangle \langle X_2, \varepsilon \rangle \cdots \langle X_m, \varepsilon \rangle$$

Illustration

For $A \rightarrow aA$ and $\langle A, \varepsilon \rangle$, we introduce

$$\langle A, \varepsilon \rangle \rightarrow \langle \alpha, \varepsilon \rangle \langle A, \varepsilon \rangle$$

 $\langle A, \varepsilon \rangle \rightarrow \langle \alpha, A \rangle$

2 For each $A \rightarrow y$ and $\langle X, uAv \rangle$, we introduce

$$\langle X, uAv \rangle \rightarrow \langle X, uyv \rangle$$

2 For each $A \rightarrow y$ and $\langle X, uAv \rangle$, we introduce

$$\langle X, uAv \rangle \rightarrow \langle X, uyv \rangle$$

Illustration

For $A \to BC$ and $\langle a, AD \rangle$, we introduce

$$\langle a, AD \rangle \rightarrow \langle a, BCD \rangle$$

2 For each $A \rightarrow y$ and $\langle X, uAv \rangle$, we introduce

$$\langle X, uAv \rangle \rightarrow \langle X, uyv \rangle$$

Illustration

For $A \to BC$ and $\langle a, AD \rangle$, we introduce

$$\langle a, AD \rangle \rightarrow \langle a, BCD \rangle$$

Illustration

For $A \to \varepsilon$ and $\langle \alpha, AD \rangle$, we introduce

$$\langle a, AD \rangle \rightarrow \langle a, D \rangle$$

3 For each $\langle X, uAv \rangle$ and $\langle Y, y \rangle$, we introduce

$$\langle \mathbf{X}, uAv \rangle \to \langle \mathbf{X}, uv \rangle \langle \mathbf{Y}, y \rangle \to \langle \mathbf{Y}, yA \rangle$$

+ regulation!

3 For each $\langle X, uAv \rangle$ and $\langle Y, y \rangle$, we introduce

$$\langle \mathbf{X}, \mathsf{U} \mathsf{A} \mathsf{V} \rangle \to \langle \mathbf{X}, \mathsf{U} \mathsf{V} \rangle \\ \langle \mathbf{Y}, \mathsf{y} \rangle \to \langle \mathbf{Y}, \mathsf{y} \mathsf{A} \rangle$$

+ regulation!

Illustration

For $\langle C, AD \rangle$ and $\langle a, B \rangle$, we introduce

$$\langle C, AD \rangle \rightarrow \langle C, D \rangle$$

 $\langle a, B \rangle \rightarrow \langle a, BA \rangle$

4 For each terminal a, we introduce

$$\langle \mathbf{a}, \varepsilon \rangle \rightarrow \mathbf{a}$$

For each terminal a, we introduce

$$\langle \mathbf{a}, \varepsilon \rangle \rightarrow \mathbf{a}$$

Illustration

For a, b, c, we introduce

$$\begin{array}{l} \langle \mathbf{a}, \varepsilon \rangle \to \mathbf{a} \\ \langle \mathbf{b}, \varepsilon \rangle \to \mathbf{b} \\ \langle \mathbf{c}, \varepsilon \rangle \to \mathbf{c} \end{array}$$

Example

- 1: $S \rightarrow ABC$
- $2: A \rightarrow aA$
- $3: B \rightarrow bB$
- 4: $C \rightarrow cC$
- $\langle S, \varepsilon \rangle$

- 5: $A \rightarrow \varepsilon$
- 6: B → ε
- 7: $C \rightarrow \varepsilon$

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$\langle S, \varepsilon \rangle \quad \Rightarrow \quad \langle A, \varepsilon \rangle \langle B, \varepsilon \rangle \langle C, \varepsilon \rangle \qquad [\langle S, \varepsilon \rangle \to \langle A, \varepsilon \rangle \langle B, \varepsilon \rangle \langle C, \varepsilon \rangle]$$

Example

1:
$$S \rightarrow ABC$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B \rightarrow \varepsilon$$

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{ccc} \langle \mathbf{S}, \varepsilon \rangle & \Rightarrow & \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & \left[\langle \mathbf{S}, \varepsilon \rangle \to \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle \right] \\ & \Rightarrow & \langle \mathbf{\alpha}, \mathbf{A} \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & \left[\langle \mathbf{A}, \varepsilon \rangle \to \langle \mathbf{\alpha}, \mathbf{A} \rangle \right] \end{array}$$

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{lll}
\langle \mathbf{S}, \varepsilon \rangle & \Rightarrow & \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{S}, \varepsilon \rangle \to \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle] \\
& \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{A}, \varepsilon \rangle \to \langle \mathbf{a}, \mathbf{A} \rangle] \\
& \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{B}, \varepsilon \rangle \to \langle \mathbf{b}, \mathbf{B} \rangle]
\end{array}$$

Example

1:
$$S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B \rightarrow \varepsilon$$

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{lll}
\langle \mathbf{S}, \varepsilon \rangle & \Rightarrow & \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{S}, \varepsilon \rangle \to \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle] \\
& \Rightarrow & \langle \mathbf{a}, A \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{A}, \varepsilon \rangle \to \langle \mathbf{a}, A \rangle] \\
& \Rightarrow & \langle \mathbf{a}, A \rangle \langle \mathbf{b}, B \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{B}, \varepsilon \rangle \to \langle \mathbf{b}, B \rangle] \\
& \Rightarrow & \langle \mathbf{a}, A \rangle \langle \mathbf{b}, B \rangle \langle \mathbf{c}, C \rangle & [\langle \mathbf{C}, \varepsilon \rangle \to \langle \mathbf{c}, C \rangle]
\end{array}$$

Example

$$1: S \rightarrow ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{lll} \langle \mathcal{S}, \varepsilon \rangle & \Rightarrow & \langle \mathcal{A}, \varepsilon \rangle \langle \mathcal{B}, \varepsilon \rangle \langle \mathcal{C}, \varepsilon \rangle & [\langle \mathcal{S}, \varepsilon \rangle \to \langle \mathcal{A}, \varepsilon \rangle \langle \mathcal{B}, \varepsilon \rangle \langle \mathcal{C}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathcal{a}, \mathcal{A} \rangle \langle \mathcal{B}, \varepsilon \rangle \langle \mathcal{C}, \varepsilon \rangle & [\langle \mathcal{A}, \varepsilon \rangle \to \langle \mathcal{a}, \mathcal{A} \rangle] \\ & \Rightarrow & \langle \mathcal{a}, \mathcal{A} \rangle \langle \mathcal{b}, \mathcal{B} \rangle \langle \mathcal{C}, \varepsilon \rangle & [\langle \mathcal{B}, \varepsilon \rangle \to \langle \mathcal{b}, \mathcal{B} \rangle] \\ & \Rightarrow & \langle \mathcal{a}, \mathcal{A} \rangle \langle \mathcal{b}, \mathcal{B} \rangle \langle \mathcal{C}, \mathcal{C} \rangle & [\langle \mathcal{C}, \varepsilon \rangle \to \langle \mathcal{C}, \mathcal{C} \rangle] \\ & \Rightarrow & \langle \mathcal{a}, \varepsilon \rangle \langle \mathcal{b}, \mathcal{B} \rangle \langle \mathcal{C}, \mathcal{C} \rangle & [\langle \mathcal{a}, \mathcal{A} \rangle \to \langle \mathcal{a}, \varepsilon \rangle] \end{array}$$

Example

$$1: S \to ABC$$

$$2: A \rightarrow aA$$

$$3: B \rightarrow bB$$

4:
$$C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{lll} \langle \mathbf{S}, \varepsilon \rangle & \Rightarrow & \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{S}, \varepsilon \rangle \to \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{A}, \varepsilon \rangle \to \langle \mathbf{a}, \mathbf{A} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{B}, \varepsilon \rangle \to \langle \mathbf{b}, \mathbf{B} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{C}, \varepsilon \rangle \to \langle \mathbf{c}, \mathbf{C} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{a}, \mathbf{A} \rangle \to \langle \mathbf{a}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \varepsilon \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{b}, \mathbf{B} \rangle \to \langle \mathbf{b}, \varepsilon \rangle] \end{array}$$

Example

1:
$$S \rightarrow ABC$$

2:
$$A \rightarrow aA$$

3: $B \rightarrow bB$

$$4: C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{lll} \langle \mathbf{S}, \varepsilon \rangle & \Rightarrow & \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{S}, \varepsilon \rangle \to \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{A}, \varepsilon \rangle \to \langle \mathbf{a}, \mathbf{A} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{B}, \varepsilon \rangle \to \langle \mathbf{b}, \mathbf{B} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{C}, \varepsilon \rangle \to \langle \mathbf{c}, \mathbf{C} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{a}, \mathbf{A} \rangle \to \langle \mathbf{a}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \varepsilon \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{b}, \mathbf{B} \rangle \to \langle \mathbf{b}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \varepsilon \rangle \langle \mathbf{c}, \varepsilon \rangle & [\langle \mathbf{c}, \mathbf{C} \rangle \to \langle \mathbf{c}, \varepsilon \rangle] \end{array}$$

Example

1:
$$S \rightarrow ABC$$

2: $A \rightarrow aA$
3: $B \rightarrow bB$

$$4: C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{lll} \langle \textbf{S}, \varepsilon \rangle & \Rightarrow & \langle \textbf{A}, \varepsilon \rangle \langle \textbf{B}, \varepsilon \rangle \langle \textbf{C}, \varepsilon \rangle & [\langle \textbf{S}, \varepsilon \rangle \rightarrow \langle \textbf{A}, \varepsilon \rangle \langle \textbf{B}, \varepsilon \rangle \langle \textbf{C}, \varepsilon \rangle] \\ & \Rightarrow & \langle \textbf{a}, \textbf{A} \rangle \langle \textbf{B}, \varepsilon \rangle \langle \textbf{C}, \varepsilon \rangle & [\langle \textbf{A}, \varepsilon \rangle \rightarrow \langle \textbf{a}, \textbf{A} \rangle] \\ & \Rightarrow & \langle \textbf{a}, \textbf{A} \rangle \langle \textbf{b}, \textbf{B} \rangle \langle \textbf{C}, \varepsilon \rangle & [\langle \textbf{B}, \varepsilon \rangle \rightarrow \langle \textbf{b}, \textbf{B} \rangle] \\ & \Rightarrow & \langle \textbf{a}, \textbf{A} \rangle \langle \textbf{b}, \textbf{B} \rangle \langle \textbf{c}, \textbf{C} \rangle & [\langle \textbf{C}, \varepsilon \rangle \rightarrow \langle \textbf{c}, \textbf{C} \rangle] \\ & \Rightarrow & \langle \textbf{a}, \varepsilon \rangle \langle \textbf{b}, \textbf{B} \rangle \langle \textbf{c}, \textbf{C} \rangle & [\langle \textbf{a}, \textbf{A} \rangle \rightarrow \langle \textbf{a}, \varepsilon \rangle] \\ & \Rightarrow & \langle \textbf{a}, \varepsilon \rangle \langle \textbf{b}, \varepsilon \rangle \langle \textbf{c}, \textbf{C} \rangle & [\langle \textbf{c}, \textbf{B} \rangle \rightarrow \langle \textbf{b}, \varepsilon \rangle] \\ & \Rightarrow & \langle \textbf{a}, \varepsilon \rangle \langle \textbf{b}, \varepsilon \rangle \langle \textbf{c}, \varepsilon \rangle & [\langle \textbf{c}, \textbf{C} \rangle \rightarrow \langle \textbf{c}, \varepsilon \rangle] \\ & \Rightarrow & \langle \textbf{a}, \varepsilon \rangle \langle \textbf{c}, \varepsilon \rangle & [\langle \textbf{c}, \textbf{c} \rangle \rightarrow \textbf{a}] \end{array}$$

Example

1:
$$S \rightarrow ABC$$

2: $A \rightarrow aA$
3: $B \rightarrow bB$

$$4: C \rightarrow cC$$

5:
$$A \rightarrow \varepsilon$$

6:
$$B$$
 → ε

7:
$$C \rightarrow \varepsilon$$

$$\begin{array}{lll} \langle \mathcal{S}, \varepsilon \rangle & \Rightarrow & \langle A, \varepsilon \rangle \langle B, \varepsilon \rangle \langle C, \varepsilon \rangle & [\langle S, \varepsilon \rangle \to \langle A, \varepsilon \rangle \langle B, \varepsilon \rangle \langle C, \varepsilon \rangle] \\ & \Rightarrow & \langle \alpha, A \rangle \langle B, \varepsilon \rangle \langle C, \varepsilon \rangle & [\langle A, \varepsilon \rangle \to \langle \alpha, A \rangle] \\ & \Rightarrow & \langle \alpha, A \rangle \langle b, B \rangle \langle C, \varepsilon \rangle & [\langle B, \varepsilon \rangle \to \langle b, B \rangle] \\ & \Rightarrow & \langle \alpha, A \rangle \langle b, B \rangle \langle c, C \rangle & [\langle C, \varepsilon \rangle \to \langle c, C \rangle] \\ & \Rightarrow & \langle \alpha, \varepsilon \rangle \langle b, B \rangle \langle c, C \rangle & [\langle \alpha, A \rangle \to \langle \alpha, \varepsilon \rangle] \\ & \Rightarrow & \langle \alpha, \varepsilon \rangle \langle b, \varepsilon \rangle \langle c, C \rangle & [\langle b, B \rangle \to \langle b, \varepsilon \rangle] \\ & \Rightarrow & \langle \alpha, \varepsilon \rangle \langle b, \varepsilon \rangle \langle c, \varepsilon \rangle & [\langle c, C \rangle \to \langle c, \varepsilon \rangle] \\ & \Rightarrow & \langle \alpha, \varepsilon \rangle \langle c, \varepsilon \rangle & [\langle \alpha, \varepsilon \rangle \to \alpha] \\ & \Rightarrow & \langle ab \rangle \langle c, \varepsilon \rangle & [\langle b, \varepsilon \rangle \to b] \end{array}$$

Example

Consider the regular-controlled grammar H:

1:
$$S \rightarrow ABC$$

2: $A \rightarrow aA$
3: $B \rightarrow bB$

$$4\colon C\to cC$$

$$\begin{array}{lll} \langle \mathbf{S}, \varepsilon \rangle & \Rightarrow & \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{S}, \varepsilon \rangle \to \langle \mathbf{A}, \varepsilon \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{B}, \varepsilon \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{A}, \varepsilon \rangle \to \langle \mathbf{a}, \mathbf{A} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{C}, \varepsilon \rangle & [\langle \mathbf{B}, \varepsilon \rangle \to \langle \mathbf{b}, \mathbf{B} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \mathbf{A} \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{C}, \varepsilon \rangle \to \langle \mathbf{c}, \mathbf{C} \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \mathbf{B} \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{a}, \mathbf{A} \rangle \to \langle \mathbf{a}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \varepsilon \rangle \langle \mathbf{c}, \mathbf{C} \rangle & [\langle \mathbf{b}, \mathbf{B} \rangle \to \langle \mathbf{b}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{b}, \varepsilon \rangle \langle \mathbf{c}, \varepsilon \rangle & [\langle \mathbf{c}, \mathbf{C} \rangle \to \langle \mathbf{c}, \varepsilon \rangle] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{c}, \varepsilon \rangle & [\langle \mathbf{a}, \varepsilon \rangle \to \mathbf{a}] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{c}, \varepsilon \rangle & [\langle \mathbf{b}, \varepsilon \rangle \to \mathbf{b}] \\ & \Rightarrow & \langle \mathbf{a}, \varepsilon \rangle \langle \mathbf{c}, \varepsilon \rangle & [\langle \mathbf{c}, \varepsilon \rangle \to \mathbf{c}] \end{array}$$

5: $A \rightarrow \varepsilon$

6: $B \rightarrow \varepsilon$

 $7 \cdot C \rightarrow \varepsilon$

Concluding Remarks

- Regular-controlled grammars with appearance checking.
- Workspace theorems for other regulated grammars.
- Does the new workspace theorem hold for the classical condition as well?

References

J. Dassow and G. Păun.

Regulated Rewriting in Formal Language Theory. Springer, 1989.

A. Meduna and P. Zemek.

Workspace theorems for regular-controlled grammars. *Theoretical Computer Science*, 2011 (to appear).

G. Rozenberg and A. Salomaa, editors.

Handbook of Formal Languages, Volumes 1 through 3. Springer, 1997.

A. Salomaa.

Formal Languages.
Academic Press. 1973.

Workspace Theorems for Regular-Controlled Grammars

