1/22

Regulated Pushdown

Automata
Alexander Meduna

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic, Europe

2[22
Fundamental References

* Meduna Alexander, Kolar DusSan:
Regulated Pushdown Automata, Acta Cybernetica,
Vol. 2000, No. 4, p. 653-664

e Meduna Alexander, Kolar DuSan:

One-Turn Regulated Pushdown Automata and
Thelr Reduction, Fundamenta Informatica,
Vol. 2002, No. 16, p. 399-405

3/22

Inspiration: Regulated Grammars

e Grammar G:

1.S—> AC
2. A — aAb
3.A—ab
4.C > Cc
5,C—>c

« B = {1H{24}{35}

4/22

Regulated Grammars 1/2

« Grammar G: « Without E, G
1.S—= AC generates aabbccc:
2. A— aAb S = AC 1]
3.A—>ab =aAbC [2]
4.C—>Cc =aAbCc [4]
5.C—c —>aabbCc [3]
= = {1}{24}7{35} —> aabbCcc [4]
= aabbccc [9]

L(G) ={a"b"c™:. n, m=>1}

5/22

Regulated Grammars 2/2

» With =, G does not generate aabbccc, because
124345 ¢ 5 = {1}{24}°{35}
« With =, G generates aabbcc:
S=AC [1]
= aAbC [2]
— aAbCc [4]
= aabbCc [3]
= aabbcc [5]
and 12435 e =

L(G, =) = {a"b"c™: n > 1}

6/22

PDA: Notation

« A PDA Is based on a finite set of rules
of the form:

pushdown symbol states

N\
Ada >

Input symbol or €| [pushdown string

7122

New Concept: Regulated PDASs

 PDA M:

1. Ssa — Sas
2. asa — aas
3.ash— @
4.a0b—> ¢
5. 50C > S0
6.Sgc > f

o 2 = {12M34"5"6: m, n >0}

8/22

Regulated PDAs 1/2

* PDA M: Without E, M
1. Ssa — Sas accepts aabbccc:
2. asa — aas Ssaabbccc
3.ash — 0 —> Sasabbccc [1;
4. agh = q = Saasbbcee 2
5. Sgc — Sq = Sagbcce [3
6.S0c > f = ggggc Eg
p—
2={12m34"3"6: m,n20}| _ gq¢ (5
= f [6

L(M) ={a"p"c™: n, m =1}

9/22

Regulated PDAS 2/2

« With =, M does not accept aabbccc because
1234556 ¢ = = {12M34"5"6: m, n > 0}

« With =, M accepts aabbcc:
Ssaabbcc = Sasabbcc [1]
= Saasbbcc [2]
= Sagbcc [3

= S(ccC [4
= S(C [5
= f [6

and 123456 € =
L(M,) ={a"b"c":. n > 1}

10/22

Gist: Regulated PDAs

 Consider a pushdown automaton, M, and

control language, =.

* M accepts a string, x, if and only If =
contains a control string according to

which M makes a sequ

reaches a final configu

ence of moves so It
ration after reading X.

11/22

Definition: Regulated PDA 1/4

A pushdown automaton is a 7-tuple
M=(Q,Z QR,s,S, F), where

* Q Is a finite set of states,

> IS an input alphabet,

« (O Is a pushdown alphabet,

* R Is a finite set of rules of the form:

Apa — wqg, where

AcQ,pgeQacXufehwe

* S € Q Is the start state

* S € Qs the start symbol

 F — Q Is a set of final states

12/22

Definition: Regulated PDA 2/4

 Let ¥ be an alphabet of rule labels. Let every
rule Apa — wq be labeled with a unique p € ¥ as

p. Apa — wq.

* A configuration of M, y, Is any string from Q"QX"

* Foreveryx e Q',y € 7, and p. Apa - wg € R,
M makes a move from configuration xApay to
configuration xwqy according to p, written as

xApay = xwaqy [p]

13/22

Definition: Regulated PDA 3/4

* Let y be any configuration of M. M makes zero
moves from y to y according to g, written as

% =% [€]

* |_et there exist a sequence of configurations
Yor X1s - Xy TOr SOMe n > 1 such that y; ; = %; [pil,
where p; € ¥, for 1 = 1,...,n, then M makes n moves
from y, to y,according to [p, ...p,], written as

Xo =" %n [P1-- Pnl

14/22

Definition: Regulated PDA 3/4

o If forsomen=>0, x, =" %, [Py P, We write
X0 =3 Xn [pl'" pn]

e |_et = be a control language over ¥, that is, = c V™.
With =, M accepts its language, L(M, £), as

LM, E) ={w: w € X7, Ssw =" f[c], c € =}

15/22

Language Families

* LIN -the family of linear languages

 CF - the family of context-free languages

 RE - the family of recursively enumerable
languages

« RPD(REG) - the family of languages accepted
by PDASs regulated by regular
languages

« RPD(LIN) - the family of languages accepted

by PDAS regulated by linear
languages

16/22

Theorem 1 and 1ts Proof 1/2

RPD(REG) = CF

Proof:
. CF < RPD(REG) Is clear.

11. RPD(REG) c CF:
. LetL = L(M,),

‘ PDAr \I‘Regular language

e Let = =L(G), G - regular grammar based
onrules: A—>aB,A—>a

17/22

Theorem 1 and i1ts Proof 2/2

Transform M regulated by = to a PDA N
as follows:

1) for every a.Cgb — xp from M and
every A — abB from G,
add C<gA>b — x<pB>to N

2) for every a.Cgb — xp from M and
every A — a from G, New symbol

add C<gA>b — x<pi>to N

3) T

ne set of final states in N:
{<p>: pis a final state in M}

18/22

Theorem 2

RPD(LIN) = RE

Proof:

» See [Meduna Alexander, Kolar DuSan:

Regulated Pushdown Automata, Acta
Cybernetica,Vol. 2000, No. 4, p. 653-664]

19/22

Simplification of RPDAs 1/2

|. consider two consecutive moves made by a
pushdown automaton, M.

If during the first move M does not shorten Its
pushdown and during the second move It does,
then M makes a turn during the second move.

A pushdown automaton is one-turn if it
makes no more than one turn during any
computation starting from an initial
configuration.

20/22

One-Turn PDA: Illustration

|_ength of pushdown

>

One-turn

>
Moves

21/22

Simplification of RPDASs 2/2

I1. During a move, an atomic regulated PDA
changes a state and, in addition, performs exactly
one of the following actions:

1. pushes a symbol onto the pushdown
2. pops a symbol from the pushdown
3. reads an input symbol

22122

Theorem 3

* Every L € RE Is accepted by
an atomic one-turn PDA
regulated by =, where = € LIN.

Proof:

» See [Meduna Alexander, Kolar DuSan:
One-Turn Regulated Pushdown Automata and
Their Reduction, Fundamenta

Informatica,Vol. 2002, No. 16, p. 399-405]
End

