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Inspiration: Regulated Grammars

• Grammar G:

1. S  AC

2. A  aAb

3. A  ab

4. C  Cc

5. C  c

•  = {1}{24}*{35}
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Regulated Grammars 1/2

1. S  AC

2. A  aAb

3. A  ab

4. C  Cc

5. C  c

 = {1}{24}*{35}

• Without , G

generates aabbccc:

S  AC [1]

 aAbC [2]

 aAbCc [4]

 aabbCc [3]

 aabbCcc [4]

 aabbccc [5]

L(G) = {anbncm: n, m  1}

• Grammar G:
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Regulated Grammars 2/2

S  AC [1]

 aAbC [2]

 aAbCc [4]

 aabbCc [3]

 aabbcc [5]

L(G, ) = {anbncn: n  1}

• with , G does not generate aabbccc, because

124345   = {1}{24}*{35}

• with , G generates aabbcc:

and 12435  
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PDA: Notation

pushdown symbol

• A PDA is based on a finite set of rules 

of the form:

Aqa  xp

states

pushdown stringinput symbol or 

6/22



New Concept: Regulated PDAs

1. Ssa  Sas

2. asa  aas

3. asb  q

4. aqb  q

5. Sqc  Sq

6. Sqc  f

•  = {12m34n5n6: m, n  0}

• PDA M:
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Regulated PDAs 1/2

 = {12m34n5n6: m, n  0}

Ssaabbccc

 Sasabbccc [1]

 Saasbbccc [2]

 Saqbccc [3]

 Sqccc [4]

 Sqcc [5]

 Sqc [5]

 f [6]

L(M) = {anbncm: n, m  1}

• PDA M:

1. Ssa  Sas

2. asa  aas

3. asb  q

4. aqb  q

5. Sqc  Sq

6. Sqc  f
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• Without , M

accepts aabbccc:



Regulated PDAs 2/2

L(M, ) = {anbncn: n  1}

• with , M does not accept aabbccc because

1234556   = {12m34n5n6: m, n  0}
• with , M accepts aabbcc:

and 123456  

 Sasabbcc [1]

 Saasbbcc [2]

 Saqbcc [3]

 Sqcc [4]

 Sqc [5]

 f [6]

Ssaabbcc
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Gist: Regulated PDAs

• Consider a pushdown automaton, M, and

control language, .

• M accepts a string, x, if and only if 

contains a control string according to

which M makes a sequence of moves so it

reaches a final configuration after reading x.
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Definition: Regulated PDA 1/4
A pushdown automaton is a 7-tuple

M = (Q, , , R, s, S, F), where
• Q is a finite set of states,

•  is an input alphabet,

•  is a pushdown alphabet,

• R is a finite set of rules of the form: 

Apa  wq, where

A  , p,q  Q, a    {}, w  *

• s  Q is the start state

• S   is the start symbol

• F  Q is a set of final states
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Definition: Regulated PDA 2/4
• Let  be an alphabet of rule labels. Let every

rule Apa wq be labeled with a unique    as

. Apa  wq.

• A configuration of M, , is any string from*Q*

• For every x  *, y  *, and . Apa  wq  R,

M makes a move from configuration xApay to

configuration xwqy according to , written as

xApay  xwqy []
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Definition: Regulated PDA 3/4
• Let  be any configuration of M. M makes zero

moves from  to  according to , written as

 0  []

• Let there exist a sequence of configurations

0, 1, ..., n for some n  1 such that i-1  i [i],

where i  , for i = 1,...,n, then M makes n moves

from 0 to n according to [1 …n], written as 

0 
n n [1... n]
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Definition: Regulated PDA 3/4

• If for some n  0, 0 
n n [1... n], we write  

0 
* n [1... n]
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• Let  be a control language over, that is,   *.

With , M accepts its language, L(M, ), as

L(M, ) = {w: w  *, Ssw * f [],   }



Language Families

• LIN - the family of linear languages

• CF - the family of context-free languages

• RE - the family of recursively enumerable

languages 

• RPD(REG) - the family of languages accepted

by PDAs regulated by regular

languages

• RPD(LIN) - the family of languages accepted

by PDAs regulated by linear 

languages
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Theorem 1 and its Proof 1/2

RPD(REG) = CF

Proof:

I. CF  RPD(REG) is clear.

II. RPD(REG)  CF:

• Let L = L(M, ),

Regular languagePDA

• Let  = L(G), G - regular grammar based

on rules: A  aB, A  a
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Theorem 1 and its Proof 2/2
Transform M regulated by  to a PDA N

as follows:

1) for every a.Cqb  xp from M and

every A  aB from G,

add C<qA>b  x<pB> to N

2) for every a.Cqb  xp from M and

every A  a from G,

add C<qA>b  x<pf> to N

3) The set of final states in N:

{<pf>: p is a final state in M}

New symbol
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Theorem 2

RPD(LIN) = RE

Proof:

• See [Meduna Alexander, Kolář Dušan:

Regulated Pushdown Automata, Acta 

Cybernetica,Vol. 2000, No. 4, p. 653-664]
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Simplification of RPDAs 1/2

I. consider two consecutive moves made by a 

pushdown automaton, M.

If during the first move M does not shorten its 

pushdown and during the second move it does, 

then M makes a turn during the second move.

• A pushdown automaton is one-turn if it 

makes no more than one turn during any 

computation starting from an initial 

configuration.
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One-Turn PDA: Illustration
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Simplification of RPDAs 2/2
II. During a  move, an atomic regulated PDA 

changes a state and, in addition, performs exactly 

one of the following actions:

1. pushes a symbol onto the pushdown

2. pops a symbol from the pushdown

3. reads an input symbol
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Theorem 3

• Every L  RE is accepted by 

an atomic one-turn PDA 

regulated by , where   LIN.

Proof:
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• See [Meduna Alexander, Kolář Dušan:

One-Turn Regulated Pushdown Automata and 

Their Reduction, Fundamenta 

Informatica,Vol. 2002, No. 16, p. 399-405]
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