#-Rewriting Systems in Relation to Simple Matrix Grammars

Dominika Klobučníková

Brno University of Technology, Faculty of Information Technology
Božetěchova 1/2. 612 66 Brno - Královo Pole
iklobucnikova@fit.vutbr.cz

Outline

- Simple Matrix Grammars
 Generative Power
- #-Rewriting Systems
 n-Linear #-Rewriting Systems
- Relation Between SMG and #RS
 Linear Grammars
 Context-Free Grammars

Simple Matrix Grammar

Definition

A simple matrix grammar of degree n, $n \ge 1$, is (n + 3)-tuple:

$$G = (N_1, N_2, \dots, N_n, T, M, S)$$

- $N_1, N_2, \dots N_n$ are the alphabets of nonterminals,
- T is the alphabet of terminals, $T \cap N_i = \emptyset$, all $1 \le i \le n$,
- M is the set of rewriting matrices in the form:

$$(S \to X),$$

$$x \in T^*$$
,

$$(S \rightarrow A_1 A_2 \dots A_n),$$

$$A_i \in N_i$$
, $1 \le i \le n$,

3
$$(A_1 \to X_1, A_2 \to X_2, \dots, A_n \to X_n)$$
,

$$x_i \in (N_i \cup T)$$
,

• S is the start symbol,
$$S \notin T \cup \{N_1, N_2, \dots, N_n\}$$
.

Generated Language

Derivation Step

Let $u=\alpha_1A_1\beta_i\alpha_2A_2\beta_2\dots\alpha_nA_n\beta_n$ and $v=\alpha_1x_1\beta_2\alpha_2x_2\beta_2\dots\alpha_nx_n\beta_n$, where $\alpha_i\in T^*$, $A_i\in N_i$, $\beta_i\in (N_i\cup T)^*$ for all $1\leq i\leq n$. If there exists $(A_1\to x_1,\dots,A_n\to x_n)\in M$, u derives v,

$$U \Rightarrow V$$
.

* Reflexive and transitive closure, \Rightarrow *, is defined in the usual manner.

$$L(G) = \{ x \in T^* \mid S \Rightarrow^* X \}$$

Example

$$G = (\{A\}, \{B\}, \{a, b\}, M, S)$$

- 2 $(A \rightarrow aAb, B \rightarrow aBb)$
- (3) $(A \rightarrow ab, B \rightarrow ab)$

$$S \Rightarrow_1 AB \Rightarrow_2 aAb \ aBb \Rightarrow_2^n aa^n Ab^n b \ aa^n Bb^n b$$

 $\Rightarrow_3 aa^{n+1} abb^{n+1} b \ aa^{n+1} abb^{n+1} b$

$$L(G) = \{a^n b^n a^n b^n \mid n \ge 1\}$$

$$L(G) \notin \mathcal{L}(CF)$$

Generative Power of SMG

Determined by two properties – $\mathcal{L}(SM, X, n)$:

- 1) Type of grammar rules used $X \in \{LIN, REG, CF\}$
 - $\mathscr{L}(X) = \mathscr{L}(SM, X \varepsilon, 1)$,
 - $\mathscr{L}(SM, REG) \subseteq \mathscr{L}(SM, LIN) \subseteq \mathscr{L}(SM, CF) \subseteq \mathscr{L}(RE)$
- 2 Degree of the grammar n
 - Grammar of degree n cannot simulate one of degree (n+1)
 - $(A_1 \to x_1, A_2 \to x_2, \dots, A_n \to x_n) \in M_n$,
 - $(A_1 \to x_1, A_2 \to x_2, \dots, A_n \to x_n, T \to x_{n+1}) \in M_{n+1}$

$$\mathscr{L}(SM,X,n)\subset \mathscr{L}(SM,X,n+1)$$
 for $n\geq 1$

* Infinite hierarchy for all grammar types and degrees

#-Rewriting System

Definition

A context-free #-rewriting system is the quadruple:

$$H = (Q, \Sigma, s, R)$$

- Q is the finite set of states.
- Σ is the alphabet, $\# \in \Sigma$,

$$Q \cap \Sigma = \emptyset$$
,

• s is the starting state,

$$s \in Q$$

• R is the set of rewriting rules,

$$R\subseteq Q\times \mathbb{N}\times \{\#\}\times Q\times \Sigma^*$$

Notation

A rule, $(p, n, \#, q, x) \in R$, where $p, q \in Q$, $n \in \mathbb{N}$, $x \in \Sigma^*$, is written as: $p_n \# \to q x$.

Generated Language

Derivation Step

Let x = p u # v and y = q u w v, where $p, q \in Q$, $u, v, w \in \Sigma^*$, such that occur(#, u) = n - 1. If there exists $p \# \to q w \in R$, then x derives y,

$$X \Rightarrow V$$
.

* Reflexive and transitive closure, \Rightarrow *, is defined in the usual manner.

Generated Language

$$L(H) = \{ w \mid s \# \Rightarrow^* q w, q \in Q, w \in (\Sigma - \#)^* \}$$

Index of #-Rewriting System, $\mathcal{L}_n(\#RS)$

A #-rewriting system, H, is of index n if for every configuration, $s \# \Rightarrow^* qy$, $occur(\#, y) \le n$.

Example

$$H = (\{s, p, q, f\}, \{a, b, c, \#\}, s, R)$$

- **1** $s_1 \# \to p \# \#$
- **2** $p_1 \# \to q a \# b$
- **3** $q_2 \# \to p \# c$
- **4** $p_1 \# \to f \ ab$
- **6** $f_1 \# \to f_C$

$$s \# \Rightarrow_1 p \# \# \Rightarrow_2 q a \# b \# \Rightarrow_3 p a \# b \# c \Rightarrow_4 f a b \# c \Rightarrow_5 f a b c$$

$$L(H) = \{a^n b^n c^n \mid n \ge 1\}$$

$$L(H) \notin \mathcal{L}(CF)$$

n-Linear #-Rewriting System

n-Linear #-Rewriting System

Let $H = (Q, \Sigma, s, R)$ be a context-free #-rewriting system and, in addition, R satisfies

$$R \subseteq Q \times \mathbb{N} \times \{\#\} \times Q \times ((\Sigma - \{\#\})^* \{\#\} (\Sigma - \{\#\})^* \cup (\Sigma - \{\#\})^*),$$

then *H* is an *n*-linear #-rewriting system, *n*-LIN#RS.

n-Right-Linear #-Rewriting System

Let $H = (Q, \Sigma, s, R)$ be a context-free #-rewriting system and, in addition, R satisfies

$$R \subseteq Q \times \mathbb{N} \times \{\#\} \times Q \times ((\Sigma - \{\#\})^* \{\#\} \cup (\Sigma - \{\#\})^*),$$

then H is an n-right-linear #-rewriting system, n-RLIN#RS.

$$L(H) = \{ w \mid s \#^n \Rightarrow^* q w, q \in Q, w \in (\Sigma - \#)^* \}$$

Relation Between SMG and #RS

Theorem

$$\mathcal{L}(n-LIN\#RS) = \mathcal{L}(SM, LIN, n) \tag{1}$$

$$\mathscr{L}_{n}(CF\#RS) = \mathscr{L}(SM, CF, n) \tag{2}$$

Idea of Proof

- $X \in \{\text{n-LIN}, \text{CF}\}$
- Construct an equivalent SMG for every #RS
- $2 \mathscr{L}(SM,X,n) \subseteq \mathscr{L}(X\#RS)$
 - Construct an equivalent #RS for every SMG

Lemma

$$\mathscr{L}(\text{n-RLIN}\#\text{RS}) = \mathscr{L}(\text{SM}, \text{RLIN}, \text{n})$$

Proof

Let $H = (Q, \Sigma, s, R)$ be an *n*-linear #-rewriting system. Construct a linear simple matrix grammar,

$$G = (N_1, \ldots, N_n, \Sigma, M, \langle s \rangle),$$

 $N_i \subseteq (Q \times \mathbb{N}_0)$ for all $1 \le i \le n$. M is constructed as follows:

- 2 $(u, \langle p, i \rangle \to w_1 \langle q, i \rangle w_2, v)$ for every rule $p_i \# \to q w_1 \# w_2 \in R$,

 * u, v defined analogously with RLIN grammars

 such that |u| + |v| = n 1,

Proof Contd.

- 3 $(u, \langle p, i \rangle \rightarrow \langle q, 0 \rangle, v)$ for every rule $p_i \# \rightarrow q \ w \in R$
 - * *u, v* defined analogously with RLIN grammars
 - * ordinal numbers of nonterminals in v are decreased such that |u| + |v| = n 1,
- **4** $(\langle q, 0 \rangle \to \varepsilon)^n$ for every $q \in Q$.

Observation

$$L(H) = L(G)$$

Proof of $\mathcal{L}(SM, LIN, n) \subseteq \mathcal{L}(n-LIN\#RS)$

Claim 2

$$\mathscr{L}(SM, LIN, n) \subseteq \mathscr{L}(n-LIN\#RS)$$

Proof

Let $G = (N_1, N_2, \dots, N_n, T, M, S)$ be a linear SMG. Construct an n-linear #-rewriting system,

$$H = (Q, T, \langle \Delta, S \rangle, R),$$

where Q is defined analogously with RLIN grammars, and R is constructed in the following way:

$$\begin{array}{c} \langle \mathcal{p}, \overline{A_1}, \dots, \overline{A_{n-1}}, A_n \rangle_n \# \to \langle \Delta, B_1, B_2, \dots, B_n \rangle x_{n1} \# x_{n2} \\ \text{for every } \mathcal{p} \colon (A_1 \to x_{11} B_1 x_{12}, \dots, A_n \to x_{n1} B_n x_{n2}) \in M. \end{array}$$

Proof of $\mathcal{L}(SM, LIN, n) \subseteq \mathcal{L}(n-LIN\#RS)$

Proof Contd.

Observation

$$L(G) = L(H)$$

Conclusion

$$\mathscr{L}(n\text{-}LIN\#RS) = \mathscr{L}(SM,LIN,n)$$

Proof of $\mathcal{L}_n(CF\#RS) \subseteq \mathcal{L}(SM, CF, left-n)$

Claim

$$\mathscr{L}_{\mathsf{n}}(\mathsf{CF\#RS})\subseteq\mathscr{L}(\mathsf{SM},\mathsf{CF},\mathsf{left-n})$$

Proof

Let $H = (Q, \Sigma, s, R)$ be a #-rewriting system of index n. Construct a context-free simple matrix grammar,

$$G = (N_1, \ldots, N_n, \Sigma, M, \langle s \rangle),$$

 $N_i \subseteq (Q \times \mathbb{N}_0)$ for all $1 \le i \le n$. M is constructed as follows:

- 2 4 Defined analogously with LIN grammars
- **5** $(u, \langle p, i \rangle \rightarrow \langle q, i \rangle \dots \langle q, i + i' \rangle, v)$ for every $p_i \# \rightarrow q w \#^{i'+1} \in R$
 - * u defined analogously with LIN grammars
 - * $V = (\langle p, j'_1 \rangle \to w_{j'_1}, \dots, \langle p, j'_n \rangle \to w_{j'_n})$ $i + i' < j'_{k'} \le n \lor j'_{k'} = 0$
 - * i' leftmost $\langle p, 0 \rangle$ nonterminals in v are erased, $\langle p, 0 \rangle \rightarrow \varepsilon$

Proof of $\mathcal{L}_n(CF\#RS) \subseteq \mathcal{L}(SM, CF, left-n)$

Proof Contd.

- 6 $(u, \langle p, i \rangle \rightarrow \langle q, 0 \rangle, v)$ for every $p_i \# \rightarrow q \in R$
 - * u defined analogously with LIN grammars

*
$$V = (\langle p, j_1' \rangle \rightarrow \langle q, i \rangle, \dots, \langle p, j_n' \rangle \rightarrow \langle p, j_{n-1}' \rangle)$$
 $i \leq j_{k'}' \leq n \vee j_{k'}' = 0$

- $(u, \langle p, 0 \rangle \to \varepsilon, v)$
 - *u, v* defined analogously with LIN grammars
- 8 $(u, \langle p, i \rangle \rightarrow \langle p, i \rangle \langle p, 0 \rangle, v)$
 - * *u, v* defined analogously with LIN grammars

Observation

$$L(H) = L(G)$$

* Proof of $\mathcal{L}(SM, CF, left-n) \subset \mathcal{L}_n(CF\#RS)$ will be omitted.

Conclusion

$$\mathscr{L}(SM, CF, left-n) = \mathscr{L}_n(CF\#RS)$$

Conclusion

Overview

- Simple Matrix Grammars infinite hierarchy
- #-Rewriting Systems
- Equivalence of presented families
- Existence of infinite hierarchy for LIN#RS, CF#RS

Future Research

Relation between CF#RS and non-leftmost SMG

Bibliography

- Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language Theory. Akademie-Verlag Berlin, 1989. ISBN: 3-05-500408-6.
- Zbyněk Křivka. "Rewriting Systems with Restricted Configurations". PhD thesis. Brno, Czech Republic: Brno University of Technology, Faculty of Information Technology, 2008.
- Alexander Meduna Zbyněk Křivka and Jaromír Smrček. "n-Right-Linear #-Rewriting Systems". In: Third Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (2007), pp. 105–112.