Jumping Pure Grammars

Alexander Meduna and Zbynék Kfivka

meduna@fit.vutbr.cz, krivka@fit.vutbr.cz

BRNO | FACULTY
UNIVERSITY | OF INFORMATION
OF TECHNOLOGY ' TECHNOLOGY

Talk at LTA 2018, Brno,
December 12,2018

| Outline of this talk | G

® Based on

Kfivka, Z., KuCera, J., and Meduna, A.: Jumping Pure Grammars.
In: The Computer Journal, 2018.

Contents of this talk:

. Introduction
. Preliminaries & Definitions
. Results

. Conclusion

Jumping Pure Grammars | 2/80

Infroduction

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously

Jumping Pure Grammars | 4/80

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously
* Adaptation of classical models to work on strings discontinuously

Jumping Pure Grammars | 5/80

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously
* Adaptation of classical models to work on strings discontinuously

¢ strongly-scattered information processing (bioinformatics,
DNA computing)

Jumping Pure Grammars | 6/80

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously
* Adaptation of classical models to work on strings discontinuously

¢ strongly-scattered information processing (bioinformatics,
DNA computing)

* Keep the structure of classical models unchanged. Change the
way they work so they jump on strings.

Jumping Pure Grammars | 7/80

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously
* Adaptation of classical models to work on strings discontinuously

¢ strongly-scattered information processing (bioinformatics,
DNA computing)

* Keep the structure of classical models unchanged. Change the
way they work so they jump on strings.

Jumping Pure Grammars | 8/80

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously
* Adaptation of classical models to work on strings discontinuously

¢ strongly-scattered information processing (bioinformatics,
DNA computing)

* Keep the structure of classical models unchanged. Change the
way they work so they jump on strings.

Related important publications

* Meduna, A. and Zemek, P: Jumping Finite Automata, Int. J.
Found. Comput. Sci., 2012 (citations: 34)

Jumping Pure Grammars | 9/80

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously
* Adaptation of classical models to work on strings discontinuously

¢ strongly-scattered information processing (bioinformatics,
DNA computing)

* Keep the structure of classical models unchanged. Change the
way they work so they jump on strings.

Related important publications

* Meduna, A. and Zemek, P: Jumping Finite Automata, Int. J.
Found. Comput. Sci., 2012 (citations: 34)

e Kfivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found.
Comput. Sci., 2015 (citations: 5)

Jumping Pure Grammars | 10/80

| Why jumping on strings | G

¢ Classical grammars and automata work strictly continuously
° Adaptation of classical models to work on strings discontinuously

* strongly-scattered information processing (bioinformatics,
DNA computing)

* Keep the structure of classical models unchanged. Change the
way they work so they jump on strings.

Related important publications

* Meduna, A. and Zemek, P: Jumping Finite Automata, Int. J.
Found. Comput. Sci., 2012 (citations: 34)

® Kfivka, Z. and Meduna, A.: Jumping Grammars, Int. J. Found.
Comput. Sci., 2015 (citations: 5)

® Kfivka, Z., Ku€era, J. and Meduna, A.: Jumping Pure Grammars,
Computer Journal, 2018

Jumping Pure Grammars | 11/80

| Grammars | G

e grammar G is based on rules of the form
X—=y

Jumping Pure Grammars | 12/80

| Grammars | G

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.

Jumping Pure Grammars | 13/80

| Grammars | G

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.
@ selects an occurrence of x in z;

Jumping Pure Grammars | 14/80

| Grammars | G

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.
© selects an occurrence of x in z;
® erase x from z;

Jumping Pure Grammars | 15/80

| Grammars | G

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.
© selects an occurrence of x in z;
® erase x from z;
® Ginserts y at the same position where x was.

Jumping Pure Grammars | 16/80

| Grammmars | BEH

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.
© selects an occurrence of x in z;
@ erase x from z;
® Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using x — y, G performs:

Jumping Pure Grammars | 17/80

| Grammmars | BEH

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.
© selects an occurrence of x in z;
@ erase x from z;
® Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using x — y, G performs:
@ selects an occurrence of x in z;

Jumping Pure Grammars | 18/80

| Grammmars | BEH

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.
© selects an occurrence of x in z;
@ erase x from z;
® Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using x — y, G performs:
@ selects an occurrence of x in z;
® erase x from z;

Jumping Pure Grammars | 19/80

| Grammmars | BEH

e grammar G is based on rules of the form
X—=y

Definition (Classical grammars)

Let z = uxv. By using x — vy, G rewrites uxv to uyv.
© selects an occurrence of x in z;
@ erase x from z;
® Ginserts y at the same position where x was.

Definition (Jumping grammars)

Let z = uxv. By using x — y, G performs:
© selects an occurrence of x in z;
® erase x from z;
® Ginserts y anywhere in uv.

Jumping Pure Grammars | 20/80

| Pure Grammars | KRG

Definition (Pure grammars)

© they use only terminails;

Jumping Pure Grammars | 21/80

| Pure Grammars | G

Definition (Pure grammars)

© they use only terminails;
® derivations start from a starting string (axiom) o;

Jumping Pure Grammars | 22/80

| Pure Grammars | G

Definition (Pure grammars)

© they use only terminails;
® derivations start from a starting string (axiom) o;

® every string they derive from o belongs to the generated
language.

Jumping Pure Grammars | 23/80

| Example: Classical Grammar | G

Classical Grammar
@ Starting nonterminal S. Rules:

S—a,S— aa

Trivially, generated language is {a, aa}.

Jumping Pure Grammars | 24 /80

| Example: Pure Grammar | KL

Pure Grammars
© Starting string S. Rules:

S—a,S— aa

Then, generated language is {S, a, aa}.

Jumping Pure Grammars | 25/80

| Example: Pure Grammar | KEGEL

Pure Grammars
© Starting string S. Rules:

S—a,S— aa

Then, generated language is {S, a, aa}.
@ Starting string a. Rules:

a— aa

Generated language is {a} .

Jumping Pure Grammars | 26/80

| Example: Pure Grammar | KEGEL

Pure Grammars
© Starting string S. Rules:

S—a,S— aa

Then, generated language is {S, a, aay}.
@ Starting string a. Rules:

a— aa

Generated language is {a} .
® Starting string aa. Rules:

a—e

Generated language is {, a, aa}.

Jumping Pure Grammars | 27/80

| Example: Jumping Grammar | G

Jumping Grammar
@ Starting nonterminal S. Rules:

S—as,S—b

Trivially, generated language is {a}*{b}{a}*.

Jumping Pure Grammars | 28/80

| Example: Jumping Pure Grammar | G

Jumping Pure Grammar
© Starting string ab. Rules:

a—a

Generated language is {ab, ba}.

Jumping Pure Grammars | 29/80

Preliminaries & Definitions

| Formal Language Theory - Basic Notions | G

e For an alphabet of symbols X, ¥* denotes the set of alll
strings over %,

Algebraically, * represents the free monoid generated by
¥ under concatenation.

The unit of X* is denoted by e (the empty string).

Yt =3*—{e}.

Any L C ¥*is alanguage over L.

letaeXandwel,

® |w| denotes the length of w and
® |w|q denotes the number of occurrences of ain w.

REG c CF c CS

® REG, CF, and CS denote the families of regular, context-free,
and confext-sensitive languages, respectively.

Jumping Pure Grammars | 31/80

| Pure Grammar | KRG

Definition (Pure Grammars)

A pure grammar (PG for short) is a friplet, G = (X, P, o), where
® Y is an alphabet;
e Pis afinite relation from X1 to £*;
e o € ¥t isthe start sfring.

Any member (x, y) € Pis called a rule and written as x — y

Jumping Pure Grammars | 32/80

| Pure Grammar | KRG

Definition (Pure Grammars)

A pure grammar (PG for short) is a friplet, G = (X, P, o), where
® Y is an alphabet;
e Pis afinite relation from X1 to £*;
e o € ¥t isthe start sfring.

Any member (x, y) € Pis called a rule and written as x — y

Definition (Propagating Pure Grammars)

If forevery x — y € P,y # ¢, Gis propagating.

Jumping Pure Grammars | 33/80

| Pure Grammar | KRG

Definition (Pure Grammars)

A pure grammar (PG for short) is a friplet, G = (X, P, o), where
® Y is an alphabet;
e Pis afinite relation from X1 to £*;
e o € ¥t isthe start sfring.

Any member (x, y) € Pis called a rule and written as x — y

Definition (Propagating Pure Grammars)

If forevery x — y € P,y # ¢, Gis propagating.

Definition (Context-Free Pure Grammars)

If forevery x — y € P, |x| = 1, G is contexi-free (CFPG for short).

Jumping Pure Grammars | 34/80

| Derivation Modes |

Letu,vex*
Derivation step according to a mode:

@ Seqguential mode: uxv ;= uyv in G iff there exists x — y € P;

Jumping Pure Grammars | 35/80

| Derivation Modes |

Letu,vex*
Derivation step according to a mode:

@ Seqguential mode: uxv ;= uyv in G iff there exists x — y € P;

® Jumping mode: Let w € ¥*,
(o) right mode: uxwv = uwyvin Giff x —y € Por
(b) left mode: uwxv ;= uywvin Giffx — y € Pin G;

Jumping Pure Grammars | 36/80

| Derivation Modes |

Letu,vex*
Derivation step according to a mode:
@ Seqguential mode: uxv ;= uyv in G iff there exists x — y € P;
® Jumping mode: Let w € ¥*,
(o) right mode: uxwv = uwyvin Giff x —y € Por
(b) left mode: uwxv ;= uywvin Giffx — y € Pin G;
© Parallel mode: u ,= vin G iff there exist
X1 = Y1,X0 — Vo,...,Xn — Yn € Psuch that u = x;x - - - x, and
V=V1V¥o--Yn. Where n > 0;

Jumping Pure Grammars | 37/80

| Derivation Modes |

Lletu,vex*
Derivation step according to a mode:

@ Seqguential mode: uxv ;= uyv in G iff there exists x — y € P;
® Jumping mode: Let w € X*,
(o) right mode: uxwv = uwyvin Giff x —y € Por
(o) left mode: uwxv = uywvin Giff x -y € Pin G;
© Parallel mode: u ,= vin G iff there exist
X1 = Y1,X0 — Vo,...,Xn — Yn € Psuch that u = x;x - - - x, and
V=V1V¥o--Yn. Where n > 0;
©® Jumping Parallel mode: u ;,= v in Giff there exist
X1 = Y1,X0 — Vo,...,Xn — Yn € Psuch that u = x;x - - - X, and
V=212 --Zn, Where (21,2, ..., z,) is a permutation of
(y]ay27"'7yﬂ)ln2 0

Jumping Pure Grammars | 38/80

| Derivation Modes |

Lletu,vex*
Derivation step according to a mode:

@ Seqguential mode: uxv ;= uyv in G iff there exists x — y € P;
® Jumping mode: Let w € X*,
(o) right mode: uxwv = uwyvin Giff x —y € Por
(o) left mode: uwxv = uywvin Giff x -y € Pin G;
© Parallel mode: u ,= vin G iff there exist
X1 = Y1,X0 — Vo,...,Xn — Yn € Psuch that u = x;x - - - x, and
V=V1V¥o--Yn. Where n > 0;
©® Jumping Parallel mode: u ;,= v in Giff there exist
X1 = Y1,X0 — Vo,...,Xn — Yn € Psuch that u = x;x - - - X, and
V=212 --Zn, Where (21,2, ..., z,) is a permutation of
(y]ay27"'7yﬂ)ln2 0

Jumping Pure Grammars | 39/80

| Derivation Modes |

Lletu,vex*
Derivation step according to a mode:

@ Seqguential mode: uxv ;= uyv in G iff there exists x — y € P;
® Jumping mode: Let w € X*,
(o) right mode: uxwv = uwyvin Giff x —y € Por
(o) left mode: uwxv = uywvin Giff x -y € Pin G;
© Parallel mode: u ,= vin G iff there exist
X1 = Y1,X0 — Vo,...,Xn — Yn € Psuch that u = x;x - - - x, and
V=V1V¥o--Yn. Where n > 0;
©® Jumping Parallel mode: u ;,= v in Giff there exist
X1 = Y1,X0 — Vo,...,Xn — Yn € Psuch that u = x;x - - - X, and
V=212 --Zn, Where (21,2, ..., z,) is a permutation of
(y]ay27"'7yﬂ)ln2 0

Definition (Generated Language)
For h € {saja p)jp}’ L(67 h:>) = {X | g h:>>k X}'

| Examples | BGE

Consider CFPG G = ({a, b, ¢, d}, P, a) with
P={a— abcd,a— a,b— b,c— c,d— d}
Modes ;= and =

a = abcd = abcd = abcdbcd ;= abcdbcdbed
a,= abcd ,= abcd ,= abcdbcd ,= abcdbcdbed

LG, =)= L(G,p:>) = {a}{bcd}* € REG
Modes i~ and P

a;= abcd = bacd = badc =~ bdabcdc
ap= abcd o= badc o= bdabcdc

LG, =) =LG, p=) ={W||Wla=1,|W|p = |W[c = |W|q} €
CS - CF

Jumping Pure Grammars | 41/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}t u{b}* with ¥ = {a, b}:
® |n classical CF grammar, Gy with j=-

Jumping Pure Grammars | 42/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}t u{b}* with ¥ = {a, b}:
® |n classical CF grammar, Gy with j=-
S— aA, S— bB

Jumping Pure Grammars | 43/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}t u{b}* with ¥ = {a, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A

Jumping Pure Grammars | 44/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}t u{b}* with ¥ = {a, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A
B— ¢, B— bB

Jumping Pure Grammars | 45/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}" U {b}" with © = {a, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A
B— ¢, B— bB

® In CFPG, G, = ({a,b}, P, o) with ;=; 0 = 7. P

Jumping Pure Grammars | 46/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}" U {b}" with © = {a, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A
B— ¢, B— bB

® In CFPG, G, = ({a,b},P,o) with ;= 0 =7. P:
a— aa, b— bb

Jumping Pure Grammars | 47 /80

| Examples | BEH

Example (2)
Our goal: Language L = {a}*™ U {b}* with X = {qg, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A
B— ¢, B— bB

® In CFPG, G, = ({a,b}, P, o) with ;=; 0 = 7. P

a— aa, b— bb
a—borc—a,c—b

Jumping Pure Grammars | 48/80

| Examples | BGE

Example (2)

Our goal: Language L = {a}" U {b}" with © = {a, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A
B— ¢, B— bB
® InCFPG, G, = ({a,b},P,o) with =0 =2, P
a— aa, b— bb
a—borc—a,c—b

® In classical CF grammar with jumping, simply use G; with
= For instance,

Jumping Pure Grammars | 49/80

| Examples | BGE

Example (2)

Our goal: Language L = {a}" U {b}" with © = {a, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A
B— ¢, B— bB

® In CFPG, G, = ({a,b}, P, o) with ;=; 0 = 7. P

a— aa, b— bb
a—borc—a,c—b

® In classical CF grammar with jumping, simply use G; with
= For instance,

S;= 0A = 0AQ ;= aaaA = aaa

Jumping Pure Grammars | 50/80

| Examples | BGE

Example (2)

Our goal: Language L = {a}" U {b}" with © = {a, b}:
® |n classical CF grammar, Gy with j=-

S— aA,S— bB
A—e, A— 0A
B— ¢, B— bB

® In CFPG, G, = ({a,b}, P, o) with ;=; 0 = 7. P

a— aa, b— bb
a—borc—a,c—b

® In classical CF grammar with jumping, simply use G; with
= For instance,

S;= 0A = 0AQ ;= aaaA = aaa
L(G, =) ={ar u{b}™.

Jumping Pure Grammars | 51/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}T U {b}* with © = {q, b}:
® In CFPG, G3 = ({a, b}, P, a) with ,= and P:

Jumping Pure Grammars | 52/80

| Examples | BEH

Example (2)

Our goal: Language L = {a}T U {b}* with © = {q, b}:
® In CFPG, G3 = ({a, b}, P, a) with ,= and P:
a—b,a— bb

Jumping Pure Grammars | 53/80

| Examples | BEH

Example (2)
Our goal: Language L = {a}T U {b}* with © = {q, b}:
® In CFPG, G3 = ({a, b}, P, a) with ,= and P:

a— b, a— bb
b— a, b— aa

Jumping Pure Grammars | 54 /80

| Examples | BEH

Example (2)
Our goal: Language L = {a}T U {b}* with © = {q, b}:
® In CFPG, G3 = ({a, b}, P, a) with ,= and P:

a— b, a— bb
b— a, b— aa

For instance, a o= b o= Q0 = bbb o= Qaad = -

Jumping Pure Grammars | 55/80

| Examples | BEH

Example (2)
Our goal: Language L = {a}T U {b}* with © = {q, b}:
® In CFPG, G3 = ({a, b}, P, a) with ,= and P:

a— b, a— bb
b— a, b— aa

For instance, a o= b o= Q0 = bbb p= Qaa = - -
L(Gs,p=) = {a}t U{b}t. ©

Jumping Pure Grammars | 56 /80

| Examples | BEH

Example (2)
Our goal: Language L = {a}T U {b}* with © = {q, b}:
® In CFPG, G3 = ({a, b}, P, a) with ,= and P:

a— b, a— bb
b— a, b— aa

For instance, a o= b o= Q0 = bbb p= Qaa = - -
L(Gs,p=) = {a}t U{b}t. ©

© In CFPG grammar with , =, simply use Gz with ;,=.

Jumping Pure Grammars | 57 /80

| Examples | BGE

Example (2)
Our goal: Language L = {a}T U {b}* with © = {q, b}:
® In CFPG, G3 = ({a, b}, P, a) with ,= and P:

a— b, a— bb
b— a, b— aa

For instance, a o= b o= Q0 = bbb p= Qaa = - -
L(Gs,p=) = {a}t U{b}t. ©

© In CFPG grammar with , =, simply use Gz with ;,=.
Forinstance, a ,= b ;= aa ;= bbb ;= aaa ;= - -
L(G37jp:) = {O}+ U {b}+

Jumping Pure Grammars | 58/80

| Pure-Language Families N°r[FIT

J = Jumping, § = Sequential, P = Parallel, CF = Contexi-Free.
For a language family X, its propagating variant is X—=.

O S={L(G,=)| GisaPG};

0 JS={L(G,=)|GisaPG}L

O P={LG,,=)|GisaPG};

O JP={L(G,,=)|GisaPG}

O SCF = {L(G, ;=) | Gisa CFPG};

O JSCF = {[(G, =) | Gisa CFPG};

@ PCF = {(G,,=) | Gisa CFPG};

© JPCF = {L(G. ,=) | Gis a CFPG};

Jumping Pure Grammars | 59/80

Results

Jumping

| Hierarchy of Pure-Language Families | G

PCF
™ JPCF
PCF ¢ .
SCF ‘
. JSCF
JPCF™= ‘
SCF e

JSCF*

Figure: Dashed arrow = open problem. No connection = incomparability.

Note: Two language families X and Y are incomparable iff
XZYandY ¢ X.

Jumping Pure Grammars | 61/80

| Relations between pure-language families | G

PCF
[P o,
F
sSC . M
,,,,, B | . 1 JscF
B F J N Q
? ? ?
' JPCF
¢ G K) R
? ?
- T
D H L P S
cs

Jumping Pure Grammars | 62/80

| Relations between pure-language families | HEE

PCF
A e CF
' F
L SCF M
I T N S JSCF
B F J N Q
? ? ?
' JPCF
¢ G K ¢} R
? ? 'y
- T
D H L P S
cs

¢r={aP | pisaprime} € CS — (PCF U CF U JSCF U JPCF)
Idea ¢r ¢ JPCF: a — & ¢ P,s0 o = a. We need @ = o by

a— aaand a — a, but we get o as well.
Then, JPCF, = PCF, > JSCF, = SCF,.

Jumping Pure Grammars | 63/80

| Relations between pure-language families | HEE

PCF
A cF
‘i I M
S S N ISCF
B F J N Q
? ? ? |
JPCF
¢ G K 0 R
7 ?
- T
DYAY u L P S
! cs

(p ={d®" | n> 0} = (PCF N JPCF) — (CF U JSCF)
Idea ¢p € PCF N JPCF: Take rule a — aa with o = a.
ldea ¢p ¢ CF U JSCF: (p is not semilinear.

Jumping Pure Grammars | 64 /80

| Relations between pure-language families

PCF
LR
R - CF
: SCF | M
IR S S S S JSCF
B F J N Q
? ? ?
' JPCF
[¢ G K o R
? ?
D H L P S
?

Cs

(a={a*’b?" | n > 0} = PCF — (CF U JSCF U JPCF)
Idea ¢4 € PCF: Take rules a — aa and b — bb with ¢ = ab.
Idea ¢4 ¢ JPCF: Show the proof by contradiction.

Jumping Pure Grammars

| MR

65/80

| Relations between pure-language families

PCF
A g cF
! SCF
e VM
] N B JSCF
B F J N Q
? ? ?
' JPCF
C G K (6] R
? ?
- T
D H L P S
?

Cs

le = {a"ch" | n > 0} € SCF — (JSCF U JPCF)

Idea ¢ € SCF: Take rule ¢ — acb with o = ¢.

Jumping Pure Grammars

| MR

66/80

| Relations between pure-language families

PCF
P - crF
: SCF | M
IR S S S S JSCF
[X94
B F J N Q
? ? ?
’ ' JPCF
[¢ G K o R
? ?
D H L P S
?

Cs

¢r ={0a,aab,aac, aabc} € (SCF N JSCF) — JPCF

Idea for ¢ € SCF N JSCF: Take ¢ = aabc and rules b — ¢ and

C—e&.

Jumping Pure Grammars

| MR

67/80

| Relations between pure-language families | G

PCF
R I crF
F
¢ 1 M
,,,,, B _.._.,_JSCF
B F J N Q
? ? ?
' JPCF
°/
¢ ¢ ¢l x o R
? ?
- T
D H L P S
cs

(s = {a}* € SCF N JSCF N JPCF

Jumping Pure Grammars | 68/80

| Relations between pure-language families | G

PCF
A f-ee-E
r *%
¢ 1 M
,,,,, Bl _.._.,_JSCF
B F J N Q
? ? ?
' JPCF
¢ G K o R
? ?
- T
D H L P S
cs

¢, = {aabb, ccdd} e (PCF N CF) — (SCF U JSCF U JPCF)

Jumping Pure Grammars | 69/80

| Relations between pure-language families | HEE

PCF
R o
! F
L SeE M
IR S S S S JSCF
B F J N Q
? ? ?
| JPCF
C G K (6] R
? ?
- T
e/
D I:,I P S
i Cs

¢, = {ab, cd, dc} € (PCF N CFN JPCF) — (SCF U JSCF)

We need to rewrite two symbols in parallel such as with
a—c,b—-d,c—d,d— cwithe=ab.
For instance, ab ,= cd ,= dc or objp:» dc.

Jumping Pure Grammars | 70/80

| Relations between pure-language families | G

PCF
R I O,
F ®tm
¢ 1 M
,,,,, Bl _.._.,_JSCF
B F J N Q
? ? ?
' JPCF
¢ G K o R
? ?
- T
D H L P S
cs

tw ={a"b" | n> 1} € CF — (PCF U JSCF U JPCF)

Jumping Pure Grammars | 71/80

| Relations between pure-language families

PCF
A e gg?
' F
L SCF M
IR S S S S JSCF
B F J N Q
? ? ?
' JPCF
L 76}
¢ G K o R
? ?
D H L P S
?

Cs

o = {aabb, abab, abba, baab, baba, bbaa} e

(CF N JSCF N JPCF) — PCF

Jumping Pure Grammars

| MR

72/80

| Relations between pure-language families

PCF
A e gg?
' F
L SCF M
IR S S S S JSCF
B F J N Q
? ? ?
' JPCF
¢ G K) R
? ?
o lp!
D u L P S

Cs

¢p = {aabb, ccdd, cdcd, cddc, dccd, decdce, ddec} €

(CF N JPCF) — (PCF U JSCF)

Jumping Pure Grammars

| MR

73/80

| Relations between pure-language families | G

PCF
S CF
SCF | M
,,,,, Bl o1 o 1 ascr
B F J N Q
2 ? ? ? .
JPCF
olp !
¢ ¢l K o R
? ?
- T
D u L P S
) cs

_ Wlg —1=|W|p =W,
lp = {W w e {a,b,c}* € (JSCFNJPCF) — (CFUPCF)

Jumping Pure Grammars | 74/80

| Relations between pure-language families | G

PCF
A e Q’F;‘
: SCF | M
IR S U S S JSCF
B F J N Q
? ? ?
' JPCF
[¢ G K o R
7 ?
- T
OZS
D H L P S
cs

_ (b (W]a =T =[w|p =W,
ls={abctuqw we {a,b,c}* €

JPCF — (CF U PCF U JSCF)

Jumping Pure Grammars | 75/80

| Pure-Language Families over Unary Alphabeliiai

PCF,° JPCF;*
PCF, JPCF,
SCF, JSCF,
SCF,® —— JSCF;*

Jumping Pure Grammars | 76/80

| Pure-Language Families over Unary Alphabeliiai

PCF,° JPCF;*
PCF, JPCF,
SCF, JSCF,
SCF,® —— JSCF;*

Note: SCF, and PCF° are incomparable.

Jumping Pure Grammars | 7780

Conclusion

Jumping Pure Grammars |

| Conclusion, Future Work | EGEH

Open Problems

Closure Properties

Decidability (Emptiness, Universality, ...)
Left-jlumps and Right-jumps in Pure Grammars

Jumping Pure Grammars | 79/80

Thank You For Your Attention!

	Introduction
	Preliminaries & Definitions
	Results
	Conclusion

