Reducing Deep Pushdown Automata

Zbyněk Křivka & Rudolf Schönecker

Supervised by Alexander Meduna

Department of Information Systems Faculty of Information Technologies Brno University of Technology

Electrical Engineering, Information and Communication Technologies, April 27, 2006

Outline

- Motivation
 - Motivation and Inspiration
- 2 Definitions
 - Reducing Deep Pushdown Automata
 - Example
- Our Results
 - Generative power

Motivation

inspiration and special characteristics

Inspiration:

- A. Meduna's article about deep top-down parser
- general bottom-up context-free parser
- generalization of classical PDA

Definition

Reducing Deep Pushdown Automata

RDPDA is a 6-tuple $M = (Q, \Sigma, \Gamma, R, s, F)$

- Q is a finite set of states
- ∑ is an input alphabet
- $s \in Q$ is a start state
- R is finite set of rules of the form:

$$qv \vdash mpA \in R$$
, where $p, q \in Q$, $m \ge 1$, $A \in \Gamma - \Sigma$, $v \in \Gamma^*$

F ⊂ Q is a set of final states

Configuration of RDPDA

• is a pair $Q \times (\Gamma - \{\#\})^* \{\#\}$

Definition

Move and Accepted Language

Move of RDPDA from (q, uvz) to (p, uAz)

- $q, p \in Q, u, v, z \in \Gamma^*, A \in \Gamma \Sigma$
- by using qv ⊢ mpA
- $occur(u, \Gamma \Sigma) = m 1$

is
$$(q, uvz) \models (p, uAz)$$
 $[qv \vdash mpA]$ in M

Language accepted by M, L(M):

•
$$L(M) = \{ w \in \Sigma^* \mid (s, w\#) \vDash^* (f, \#) \}$$

Definition

Reducing Deep Pushdown Automata

Depth of RDPDA

- every rule qv ⊢ mpA satisfies m ≤ n
- n is minimal positive integer
- \Rightarrow denoted by $_nM$

Family of languages $\mathcal{L}_k(RDPDA)$ (of depth k)

• all languages accepted by $_iRDPDA$, $1 \le i \le k$

Simple example of RDPDA

accepting of language anbncn

$$_{2}M = (\{s, t, q, p, f\}, \{a, b, c\}, \{A, B, \#\}, R, s, \{f\})$$

1. sab ⊢ 1*tA*

4. *qBc* ⊢ 2*pB*

2. *tc* ⊢ 2*pB*

- 5. *pAB*# ⊢ 1*f*#
- 3. *paAb* ⊢ 1*qA*

Example (acceptance of string aabbcc)

$$(s, \underline{a\underline{ab}bcc\#}) \models (t, \underline{aAb\underline{c}c\#})[1] \models (p, \underline{aAb}Bc\#)[2] \models (q, \underline{ABc\#})[3] \models (p, \underline{AB\#})[4] \models (f, \#)[5]$$

Generative power and infinite hierarchy

of Reducing Deep Pushdown Automata

infinite hierarchy for RDPDAs

$$\mathcal{L}_n(RDPDA) \subset \mathcal{L}_{n+1}(RDPDA)$$
, for all $n \geq 1$

- **1** $\mathcal{L}_n(ST) \subset \mathcal{L}_{n+1}(ST)$, for all $n \geq 1$ (T. Kasai, 1970)
- $2 \mathcal{L}_n(ST) = \mathcal{L}_n(RDPDA)$

Theorem 2

$$\mathcal{L}_n(ST) = \mathcal{L}_n(RDPDA)$$
, for every $n \ge 1$

Proof: 1)
$$\mathcal{L}_n(ST) \subseteq \mathcal{L}_n(RDPDA)$$
 2) $\mathcal{L}_n(RDPDA) \subseteq \mathcal{L}_n(ST)$

Interesting determinism notice

Reducing Deep Pushdown Automata

We give more space for nondeterminism

analogy with top-down vs. bottom-up parsers

notice

But the generative power remains the same as by Deep PDA.

References...

A. Meduna.

Deep Pushdown Automata.

Acta Informatica, 2006 (in press)

T. Kasai

A Hierarchy Between Context-Free and Context-Sensitive Languages.

Journal of Computer and System Sciences, vol. 4, 1970.