Publications
-
2023
KOHúT Jan and HRADIš Michal. Finetuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition. In: Document Analysis and Recognition - ICDAR 2023. Lecture Notes in Computer Science, vol. 14190. San José: Springer Nature Switzerland AG, 2023, pp. 269-286. ISBN 978-3-031-41684-2. ISSN 0302-9743.
DetailKOHúT Jan, HRADIš Michal and KIšš Martin. Towards Writing Style Adaptation in Handwriting Recognition. In: Document Analysis and Recognition - ICDAR 2023. Lecture Notes in Computer Science, vol. 14190. San José: Springer Nature Switzerland AG, 2023, pp. 377-394. ISBN 978-3-031-41684-2. ISSN 0302-9743.
Detail -
2022
KIšš Martin, KOHúT Jan, BENEš Karel and HRADIš Michal. Importance of Textlines in Historical Document Classification. In: Uchida, S., Barney, E., Eglin, V. (eds) Document Analysis Systems. Lecture Notes in Computer Science, vol. 13237. La Rochelle: Springer Nature Switzerland AG, 2022, pp. 158-170. ISBN 978-3-031-06554-5.
DetailDVOřáKOVá Martina, HRADIš Michal, ŽABIčKA Petr, KOHúT Jan, KIšš Martin and BENEš Karel. Využití PERO OCR při přepisu rukopisů. Archivní časopis, vol. 72, no. 1, 2022, pp. 14-27. ISSN 0004-0398.
Detail -
2021
KOHúT Jan and HRADIš Michal. TS-Net: OCR Trained to Switch Between Text Transcription Styles. In: Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021. Lecture Notes in Computer Science, vol. 12824. Lausanne: Springer Nature Switzerland AG, 2021, pp. 478-493. ISBN 978-3-030-86336-4. ISSN 0302-9743.
Detail -
2017
HRADIš Michal and KOHúT Jan. XNOR net report. Brno: Fingera s.r.o., 2017.
Detail