### Brno University of Technology Faculty of Information Technology Speech@FIT

#### **Igor Szöke, Michal Fapšo,** Martin Karafiát, Lukáš Burget, František Grézl, Petr Schwarz, Ondřej Glembek, Pavel Matějka, Stanislav Kontár, Honza Černocký

szoke@fit.vutbr.cz

http://www.fit.vutbr.cz/speech





NIST STD 2006 workshop, December 14.-15. 2006, Gaithersburg

## Outlines

- System overview
- LVCSR/Phoneme recognizer
- Indexing and searching
- Results and discussion

#### English: Broadcast News, Conversational Telephone Speech, Conference Meetings

Arabic: Broadcat News, Conversational Telephone Speech

See the system description for details.

## **Spoken Term Detection System**



## Segmentation

- Speech/nonspeech detection was done using LC/RC long temporal context phoneme recognizer [Schwarz06,Matejka06]
- Segments were separated by using silences longer than 0.5s.
- Segmentation for CTS was done using comparison of short time energy in both channels. Segment is labeled as silence if:
  - the average energy in 'speech' segment is 30 dB less than the maximum energy of the utterance
  - the energy in the other channel is higher than maximum energy minus 3dB in the processed channel
- Diarization for BCN and MTG done by David van Leeuwen and Matěj Konečný at TNO.

## Diarization

**Bayesian Information Criterion (Chen & Gopalakishnan, 1998)** 

- 1 full covariance Gaussian model per segment/cluster, 13 PLP features, 16 ms frames
- compare self-likelihood data on model, between separate and merged segments/clusters, compensate for model complexity
- Segmentation
  - speech activity detection (only for meetings)
  - segment break considered every 0.1 s (6 frames)
- Clustering
  - Initialize clusters with segments found above
  - Agglomerative merging of clusters with smallest Gish distance
  - BIC stopping Criterion
- Viterbi re-segmentation
  - Build 16-Gaussian GMMs using clusters found above
  - include model for non-speech (silence)



## **Description of The LVCSR**

- We cooperate on development of LVCSR with AMI partners
- System (derived from AMI) uses 3-pass decoding:
  - 1. pass: PLP, CMN/CVN, ML models, 3-gram decoding, 1-best output
  - 2. pass: PLP, VTLN, CMN/CVN, HLDA, MPE models, MLLR speaker adaptation, 2-gram decoding, expansion to 4-gram, 1-best output
  - 3. pass: NN features + PLP, VTLN, CMN/CVN, SAT MPE models, CMLLR/MLLR speaker adaptation, 2-gram decoding, expansion to 4-gram, lattices output
- Posterior pruning was applied on final lattices.

For details see:System description and AMI LVCSR paper [Hain06]

# LVCSR Training Data

#### Acoustic:

- CTS: 277h of SWB1, part of SWB2, CHE.
- MTG: 63h of MDM meeting corpora (NIST, ISL, ICSI, AMI). The crosstalk parts were removed and beamforming to one superchannel was done (superchannel generated by IDIAP used for NIST RT05).
- BCN: 112h of IHM meeting corpora (NIST, ISL, ICSI, AMI). No BCN data were used!

LM: SWB, Fisher, Web, BBC, HUB4, SDR99, Enron email, ICSI/ISL/NIST/AMI. Total - 1.49GW

Perplexity was maximized for each task independently.

## LVCSR WER and Oracle for STD Development Set

|     | WER    | Oracle WER |
|-----|--------|------------|
| BCN | 21.03% | 9.06%      |
| CTS | 22.83% | 8.32%      |
| MTG | 46.65% | 21.79%     |

## **Description of Phoneme System**

- Phoneme lattices were generated from P3 pass features and acoustic models.
- Word language model was replaced by a phoneme 2-gram LM.
  - BCN and CTS: trained on phoneme alignment of CTS corpora used for acoustic models training.
  - MTG: trained on phoneme alignment of meeting corpora (NIST, ISL, ICSI, AMI).
- Posterior pruning was applied.

## **Indexing and Search**



# Indexing I

- Processing lattices while computing posterior probability of links and generating a forward index. Lattices are stored in our own binary format (optimized for fast access):
  - nodes and links are indexed
  - random access has O(1) complexity
  - time index is generated for each lattice to make it possible to cut out only a small part of lattice in the verification step
- For word lattices, unigrams are indexed, while for phoneme lattices, indexing units are phoneme 3-grams.

# Indexing II

- If there are overlapped words, only 1 record is stored in the forward index. It has outer time boundaries of the whole cluster and the highest confidence score (log posterior probability) of all overlapped links.
- Two inverted indices are generated:
  - 1. Sorted by wordID and confidence score
  - 2. Sorted by *wordID*, *docID*, *time*. This index is only list of pointers to the first one (no redundant information is stored).
- Inverted indices store wordID, docID, start time, end time and confidence score

## Search I

- Set of hits is retrieved from the inverted index for each word of a term.
- A word with the least number of hits is selected and the corresponding set is taken.
- For each record in this set, hits from the other words' sets satisfying the time constraints are selected.
  - **O**(*n*<sup>*m*</sup>)

*n*...number of words in the term *m*...number of word's hits

- This way, a list of candidates is generated.
- Since a set of each word's hits in the inverted index is sorted by time, binary search is used to get neighbour word's hits with a lower complexity O(n·*log*(m)).

NIST STD 2006 workshop

## Search II

• The list of candidates is sorted according to an estimated confidence score.

 $C_{est} = \min_{i=0..N} (\max_{j=0..M_i} (C_{ij}))$ 

*N* ... number of words in the query

 $M_i$  ... number of overlapped occurrences of the word *i* in the cluster

- For each of the candidates, existence of valid path in lattice is verified.
- Precise posterior probability of each candidate is evaluated.

## **OOV Search**

- If a word is not in LVCSR dictionary, G2P rules are applied for phoneme string generation.
- Phoneme string is converted to a sequence of overlapped phoneme trigrams, which are searched in index (phoneme trigrams).
- If there are 2 or more consecutive OOVs, they are processed as one word with possibility of having *sil* between them.
- If all trigrams satisfy time constraints (are overlapped), then the candidate is verified in phoneme lattice and posterior probability is calculated.
- OOVs shorter than 3 phonemes are not searched.
- Terms with OOVs shorter than 3 phonemes are not searched.

### **Term Search**

- After OOV candidates are verified, they are handled as if they were in LVCSR index.
- Term is split into sequences of IV and OOV words.
- One word sequences are obtained directly from the index (are not verified).
- Two or more IV word sequences are verified in lattice.
- If time constraints of all sequences are satisfied, the worst confidence score of them is returned (= term nonnormalized posterior probability).

## Normalization

- The goal is to normalize score of different keywords where we consider that the score is affected by:
  - length of keyword
  - phonemes the keyword consists of

 $NScore(KW) = score(KW) - G - len(KW) * F - |phn1| * P_1 - |phn2| * P_2 - \dots$ 

- score(kw) is confidence score of keyword (log posterior probability)
- len(KW) is length of the keyword (in frames)
- |phnN| is count of phoneme N in the keyword
- G is global offset to shift optimal threshold to 0
- G, F, P1, P2, ..., PN are constants to be estimated on development data.

## Normalization

- For large set of KWs, we derived scores for HITs and FAs on the development set.
- The scores corresponding to each keyword are used to construct pairs of (HIT,FA).
- For each pair, an equation in the following form is created:

 $(score(HIT) + score(FA))/2 = G + len(HIT) * F + |phn1| * P_1 + |phn2| * P_2 + ...$ 

- The left side represents an optimal threshold for given (HIT, FA) pair.
- We solve the over-deffined set of equations in minimum square error sence.

## Results

|                  | EVAL<br>ATWV<br>Merged                 | EVAL<br>MTWV<br>Merged   | EVAL<br>MTWV<br>LVCSR                 | EVAL<br>MTWV<br>PHN     | DEVEL<br>MTWV<br>Merged             |                       |
|------------------|----------------------------------------|--------------------------|---------------------------------------|-------------------------|-------------------------------------|-----------------------|
| BCN              | 0.6541                                 | 0.6558                   | 0.6305                                | 0.3625                  | 0.7020                              |                       |
| CTS              | 0.5235                                 | 0.5344                   | 0.5301                                | 0.3106                  | 0.5580                              |                       |
| MTG              | 0.0549                                 | 0.0731                   | 0.0695                                | 0.0540                  | 0.2950                              | !                     |
| BCN              | DEVEL<br>Merged<br>lattices +<br>index | DEVEL<br>Merged<br>index | DEVEL<br>LVCSR<br>lattices +<br>index | DEVEL<br>LVCSR<br>index | DEVEL<br>PHN<br>lattices +<br>index | DEVEL<br>PHN<br>index |
| size             | 1716M                                  | 242,8M                   | 395,8M                                | 7,8M                    | 1319M                               | 235M                  |
| Verif<br>NoVerif | 0.7020                                 | 0.6880                   | 0.6690                                | 0.6670                  | 0.3960                              | 0.3770                |

### Lessons Learned

- Using 4-gram expansion is only slightly better than 3-gram expansion (according to TWV).
- Posterior pruning of LVCSR lattices shortens DET but does not decreases TWV significantly.
- Posterior pruning of PHN lattices shortens DET and decreases TWV only a little. TWV decreases a lot for greater pruning factors.
- The higher branching factor for PHN lattices, the better TWV. Using higher branching factor and then stronger posterior prunning gives better TWV.

## Search Engine Capabilities not Used in STD

- Getting a context for each result by traversing the lattice forward and backward from the found sequence of links.
- Searching for unquoted queries by specifying a maximum time distance between words.
- Client/server architecture
- Graphical user interface

| Lattice S | Meeting Browser<br>earch Engine:                                                                     |    |
|-----------|------------------------------------------------------------------------------------------------------|----|
| "speech   | n recognition" <u>S</u> earch                                                                        |    |
| 100%      | Bro010_chanB.binlat (00:41:4000:41:43)<br>uh my o_k speech recognition and um me in                  |    |
| 100%      | Bro010_chanB.binlat<br>(00:43:2400:43:26)<br>being tried for speech recognition<br>yeah but eh just  | 11 |
| 100%      | Bro014_chan4.binlat (00:51:4400:51:47)<br>of it in speech recognition and test on some               |    |
| 100%      | Bro014_chan4.binlat<br>(00:52:2000:52:23)<br>!null important for speech<br>recognition               |    |
| 100%      | Bed002_chan4.binlat (00:43:4000:43:42)<br>data for them speech recognition a very so<br>that         |    |
| 100%      | Bro018_chan0.binlat (00:30:5300:30:55)<br>planning on doing speech recognition with<br>that and just |    |
| 100%      | Bro018_chan1.binlat (00:30:4900:30:51)<br>Inull in this speech recognition                           |    |

Brno University of Technology

## Credit Outside BUT

- Thomas Hain (Sheffield) for having coordinated the AMI LVCSR.
- Vinny Wan (Sheffield) for all word language models.
- David van Leeuwen and Matěj Konečný (TNO) for diarization.
- Cambridge for providing definition of h5train03 CTS training set.
- IDIAP for beam-forming.
- Funding agencies:
  - **EC**
  - Czech Ministry of Defence
  - CESNET (for the HW to burn)

NIST STD 2006 workshop



- [1] Schwarz P., Matejka P. and Cernocky J.: Hierarchical Structures of Neural Networks for Phoneme Recognition, In Proceedings of ICASSP 2006, May 2006, Toulouse, France
- [2] Matejka P., Burget L., Schwarz P. and Cernocky J., Brno University of Technology System for NIST 2005 Language Recognition Evaluation. Odyssey: The Speaker and Language Recognition Workshop, San Juan, Puerto Rico, Jun 2006
- [3] Thomas Hain et al., The AMI Meeting Transcription System: Progress and Preformance, NIST RT06 evaluations, 2006

## Thank You for Your attention.



(diarization bonus slide)

| λ     | MTG | BN  |
|-------|-----|-----|
| Seg   | 1.8 | 1.7 |
| Clust | 4   | 3   |



 $\lambda$  penalizes more parameters for separate models higher  $\lambda$ : less segments, less clusters Choice of  $\lambda$  optimized for minimum Speaker Diarization Error rate on devset.